
Aspect Description

Scope Limited to specific tasks

Intelligence Task-specific expertise

Examples Siri, chess programs, recommendation systems

Learning Pattern recognition within domain

Technique Definition Type Example

Classification Predicts discrete categories/classes Supervised Email spam detection

Regression Predicts continuous numerical values Supervised House price prediction

Clustering Groups similar data points Unsupervised Customer segmentation

Association Analysis Finds relationships between variables Unsupervised Market basket analysis

Question 1(a) [3 marks]
What do you mean by Narrow AI or Weak AI?

Answer:

Narrow AI or Weak AI refers to artificial intelligence systems designed to perform specific, limited tasks
within a narrow domain.

Table: Narrow AI Characteristics

Mnemonic: "Narrow = Specific Tasks Only"

Question 1(b) [4 marks]
Define: Classification, Regression, Clustering, Association Analysis.

Answer:

Table: Machine Learning Techniques

Mnemonic: "CRCA - Categories, Real-numbers, Clusters, Associations"

Question 1(c) [7 marks]
Illuminate the three main components of neuron.

Answer:

The three main components of a biological neuron that inspire artificial neural networks are:

Diagram:

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 1 / 25

Component Function AI Equivalent

Dendrites Receive input signals from other neurons Input layer/weights

Cell Body (Soma) Processes and integrates signals Activation function

Axon Transmits output signals to other neurons Output connections

No

YesForward Pass

Calculate
Output

Calculate Error Backward
Pass

Calculate Gradients Update Weights

Error
Acceptable?

Training
Complete

Table: Neuron Components

Key Points:

Dendrites: Act as input receivers with varying connection strengths

Cell Body: Sums inputs and applies threshold function

Axon: Carries processed signal to next neurons

Mnemonic: "DCA - Dendrites Collect, Cell-body Calculates, Axon Announces"

Question 1(c) OR [7 marks]
Explicate back propagation method in Artificial Neural Network.

Answer:

Back Propagation is a supervised learning algorithm used to train multi-layer neural networks by
minimizing error through gradient descent.

Flowchart:

Table: Back Propagation Steps

 Dendrites Cell Body Axon
 | | |
 v v v
 [Inputs] --> [Processing] --> [Output]
 | | |
 Receives Integrates Transmits
 signals signals signals

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 2 / 25

Step Process Formula

Forward Pass Calculate outputs layer by layer y = f(Σ(wi*xi + b))

Error Calculation Compute loss function E = ½(target - output)²

Backward Pass Calculate error gradients δ = ∂E/∂w

Weight Update Adjust weights using learning rate w_new = w_old - η*δ

Algorithm Type Application

Linear Regression Supervised Prediction of continuous values

Decision Tree Supervised Classification and regression

K-Means Clustering Unsupervised Data grouping

Support Vector Machine Supervised Classification with margins

Random Forest Supervised Ensemble learning

Key Features:

Gradient Descent: Uses calculus to find minimum error

Chain Rule: Propagates error backward through layers

Learning Rate: Controls speed of weight updates

Mnemonic: "FEBU - Forward, Error, Backward, Update"

Question 2(a) [3 marks]
List out any five popular algorithms used in Machine Learning.

Answer:

Table: Popular ML Algorithms

Mnemonic: "LDKSR - Learn Data, Keep Samples, Run"

Question 2(b) [4 marks]
What is Expert System? List out its limitations and applications.

Answer:

Expert System is an AI program that mimics human expert knowledge to solve complex problems in
specific domains.

Table: Expert System Overview

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 3 / 25

Aspect Details

Definition AI system with domain-specific expertise

Components Knowledge base, inference engine, user interface

Type Description Example

Word Tokenization Split by words "Hello world" → ["Hello", "world"]

Sentence Tokenization Split by sentences "Hi. How are you?" → ["Hi.", "How are you?"]

Subword Tokenization Split into subwords "unhappy" → ["un", "happy"]

Applications:

Medical Diagnosis: Disease identification systems

Financial Planning: Investment advisory systems

Fault Diagnosis: Equipment troubleshooting

Limitations:

Limited Domain: Works only in specific areas

Knowledge Acquisition: Difficult to extract expert knowledge

Maintenance: Hard to update and modify rules

Mnemonic: "EXPERT - Explains Problems, Executes Rules, Tests"

Question 2(c) [7 marks]
What is tokenization? Explain with suitable example.

Answer:

Tokenization is the process of breaking down text into smaller units called tokens (words, phrases,
symbols) for NLP processing.

Table: Tokenization Types

Code Example:

Process Flow:

import nltk
text = "Natural Language Processing is amazing!"
tokens = nltk.word_tokenize(text)
Output: ['Natural', 'Language', 'Processing', 'is', 'amazing', '!']

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 4 / 25

Raw Text Tokenization Clean Tokens

Further
Processing

Aspect Supervised Learning Unsupervised Learning

Training Data Labeled data with target outputs Unlabeled data without targets

Goal Predict specific outcomes Discover hidden patterns

Examples Classification, Regression Clustering, Association rules

Evaluation Accuracy, precision, recall Silhouette score, elbow method

Applications Email spam, price prediction Customer segmentation, anomaly detection

Key Benefits:

Standardization: Converts text to uniform format

Analysis Ready: Prepares text for ML algorithms

Feature Extraction: Enables statistical analysis

Mnemonic: "TOKEN - Text Operations Keep Everything Normalized"

Question 2(a) OR [3 marks]
Compare Supervised and Unsupervised Learning.

Answer:

Table: Supervised vs Unsupervised Learning

Mnemonic: "SU - Supervised Uses labels, Unsupervised Uncovers patterns"

Question 2(b) OR [4 marks]
Explain all about AI applications in Healthcare, Finance and Manufacturing.

Answer:

Table: AI Applications by Industry

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 5 / 25

Industry Applications Benefits

Healthcare Medical imaging, drug discovery, diagnosis
Improved accuracy, faster
treatment

Finance
Fraud detection, algorithmic trading, credit
scoring

Risk reduction, automated
decisions

Manufacturing
Quality control, predictive maintenance,
robotics

Efficiency, cost reduction

Aspect Lexical Analysis Syntactic Analysis

Purpose Tokenize text into words Parse grammatical structure

Input Raw text Tokens from lexical analysis

Output Tokens, part-of-speech tags Parse trees, grammar rules

Focus Individual words Sentence structure

Example "The cat runs" → [The, cat, runs] Creates parse tree showing noun-verb relationship

Healthcare Examples:

Medical Imaging: AI detects cancer in X-rays and MRIs

Drug Discovery: AI accelerates new medicine development

Finance Examples:

Fraud Detection: Real-time transaction monitoring

Robo-advisors: Automated investment management

Manufacturing Examples:

Quality Control: Automated defect detection

Predictive Maintenance: Equipment failure prediction

Mnemonic: "HFM - Health, Finance, Manufacturing benefit from AI"

Question 2(c) OR [7 marks]
What is syntactic analysis and how it is differ from lexical analysis?

Answer:

Syntactic Analysis examines the grammatical structure of sentences, while Lexical Analysis breaks text
into meaningful tokens.

Table: Lexical vs Syntactic Analysis

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 6 / 25

Raw Text Lexical Analysis Tokens Syntactic Analysis Parse Tree

Characteristic Description

No Memory Cannot store past experiences

Present-focused Responds only to current input

Deterministic Same input produces same output

Task-specific Designed for particular functions

No Learning Cannot improve from experience

Process Flow:

Example:

Lexical: "She reads books" → ["She", "reads", "books"]

Syntactic: Identifies "She" as subject, "reads" as verb, "books" as object

Key Differences:

Scope: Lexical works on words, Syntactic on sentence structure

Complexity: Syntactic analysis is more complex than lexical

Dependencies: Syntactic analysis depends on lexical analysis

Mnemonic: "LEX-SYN: LEXical extracts, SYNtactic structures"

Question 3(a) [3 marks]
List out various characteristics of Reactive machines.

Answer:

Table: Reactive Machines Characteristics

Examples:

Deep Blue: IBM's chess computer

Game AI: Tic-tac-toe programs

Mnemonic: "REACT - Responds Exactly, Always Consistent Tasks"

Question 3(b) [4 marks]
Differentiate: Positive Reinforcement v/s Negative Reinforcement.

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 7 / 25

Aspect Positive Reinforcement Negative Reinforcement

Definition Adding reward for good behavior Removing penalty for good behavior

Action Give something desirable Take away something undesirable

Goal Increase desired behavior Increase desired behavior

Example Give treat for correct answer Remove extra work for good performance

Answer:

Table: Positive vs Negative Reinforcement

Diagram:

Key Points:

Both increase behavior but through different mechanisms

Positive adds something pleasant

Negative removes something unpleasant

Mnemonic: "PN - Positive adds Nice things, Negative removes Nasty things"

Question 3(c) [7 marks]
Explain all about Term-Frequency-Inverse Document Frequency(TF-IDF) word embedding technique.

Answer:

TF-IDF is a numerical statistic that reflects how important a word is to a document in a collection of
documents.

Formula:

Table: TF-IDF Components

Positive Reinforcement: Negative Reinforcement:
Good Behavior Good Behavior
 + +
Add Reward Remove Penalty
 = =
Behavior Increases Behavior Increases

TF-IDF = TF(t,d) × IDF(t)
Where:
TF(t,d) = (Number of times term t appears in document d) / (Total terms in document d)
IDF(t) = log((Total documents) / (Documents containing term t))

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 8 / 25

Component Formula Purpose

Term Frequency (TF) tf(t,d) = count(t,d) / d

Inverse Document Frequency
(IDF)

idf(t) = log(N / df(t))
Measures word importance across
corpus

TF-IDF Score
tf-idf(t,d) = tf(t,d) ×
idf(t)

Final word importance score

Example Calculation:

Document: "cat sat on mat"

Term: "cat"

TF = 1/4 = 0.25

If "cat" appears in 2 out of 10 documents: IDF = log(10/2) = 0.699

TF-IDF = 0.25 × 0.699 = 0.175

Applications:

Information Retrieval: Search engines

Text Mining: Document similarity

Feature Extraction: ML preprocessing

Advantages:

Common words get low scores (the, and, is)

Rare but important words get high scores

Simple and effective for text analysis

Mnemonic: "TF-IDF - Term Frequency × Inverse Document Frequency"

Question 3(a) OR [3 marks]
Define Fuzzy Logic Systems. Discuss its key components.

Answer:

Fuzzy Logic Systems handle uncertainty and partial truth, allowing values between completely true and
completely false.

Table: Fuzzy Logic Components

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 9 / 25

Component Function Example

Fuzzifier Converts crisp inputs to fuzzy sets Temperature 75°F → "Warm" (0.7)

Rule Base Contains if-then fuzzy rules IF temp is warm THEN fan is medium

Inference Engine Applies fuzzy rules to inputs Combines multiple rules

Defuzzifier Converts fuzzy output to crisp value "Medium speed" → 60% fan speed

Element Definition Purpose

Policy Strategy for selecting actions Defines agent's behavior

Reward Signal Feedback from environment Indicates good/bad actions

Value Function Expected future rewards Estimates long-term benefit

Model Agent's representation of environment Predicts next state and reward

Key Features:

Membership Functions: Degree of belonging (0 to 1)

Linguistic Variables: Human-like terms (hot, cold, warm)

Fuzzy Rules: IF-THEN statements with fuzzy conditions

Mnemonic: "FRID - Fuzzifier, Rules, Inference, Defuzzifier"

Question 3(b) OR [4 marks]
Explain elements of reinforcement learning: Policy, Reward Signal, Value Function, Model

Answer:

Table: Reinforcement Learning Elements

Detailed Explanation:

Policy (π):

Deterministic: π(s) = a (one action per state)

Stochastic: π(a|s) = probability of action a in state s

Reward Signal (R):

Immediate feedback from environment

Positive for good actions, negative for bad actions

Value Function (V):

State Value: V(s) = expected return from state s

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 10 / 25

Aspect Frequency-based Prediction-based

Approach Count-based statistics Neural network prediction

Examples TF-IDF, Co-occurrence Matrix Word2Vec, GloVe

Computation Matrix factorization Gradient descent

Context Global statistics Local context windows

Scalability Limited by matrix size Scales with vocabulary

Quality Basic semantic relationships Rich semantic relationships

Action Value: Q(s,a) = expected return from action a in state s

Model:

Transition Model: P(s'|s,a) = probability of next state

Reward Model: R(s,a,s') = expected reward

Mnemonic: "PRVM - Policy chooses, Reward judges, Value estimates, Model predicts"

Question 3(c) OR [7 marks]
Differentiate: frequency-based v/s prediction-based word embedding techniques.

Answer:

Table: Frequency-based vs Prediction-based Word Embeddings

Frequency-based Methods:

TF-IDF: Term frequency × Inverse document frequency

Co-occurrence Matrix: Word pair frequency counts

LSA: Latent Semantic Analysis using SVD

Prediction-based Methods:

Word2Vec: Skip-gram and CBOW models

GloVe: Global Vectors for Word Representation

FastText: Subword information inclusion

Code Comparison:

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 11 / 25

Characteristic Description

Stateless No memory of past interactions

Reactive Responds only to current inputs

Deterministic Consistent outputs for same inputs

Specialized Designed for specific tasks

Real-time Immediate response to stimuli

Advantages:

Frequency-based:

Simple and interpretable

Fast computation for small datasets

Good for basic similarity tasks

Prediction-based:

Dense vector representations

Better semantic relationships

Scalable to large vocabularies

Mnemonic: "FP - Frequency counts, Prediction learns"

Question 4(a) [3 marks]
List out the key characteristics of reactive machine.

Answer:

Table: Reactive Machine Key Characteristics

Examples:

Deep Blue: Chess-playing computer

Google AlphaGo: Go-playing system (early version)

Frequency-based (TF-IDF)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(documents)

Prediction-based (Word2Vec)
from gensim.models import Word2Vec
model = Word2Vec(sentences, vector_size=100, window=5)

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 12 / 25

Technique Purpose Example

Tokenization Split text into words "Hello world" → ["Hello", "world"]

Stop Word Removal Remove common words Remove "the", "and", "is"

Stemming Reduce words to root form "running" → "run"

Lemmatization Convert to dictionary form "better" → "good"

Mnemonic: "SRDSR - Stateless, Reactive, Deterministic, Specialized, Real-time"

Question 4(b) [4 marks]
List out various pre-processing techniques. Explain any one of them with python code.

Answer:

Table: Text Pre-processing Techniques

Stemming Explanation:
Stemming reduces words to their root form by removing suffixes.

Python Code for Stemming:

Benefits of Stemming:

Reduces vocabulary size for ML models

Groups related words together

Improves text analysis efficiency

Mnemonic: "TSSL - Tokenize, Stop-words, Stem, Lemmatize"

Question 4(c) [7 marks]

import nltk
from nltk.stem import PorterStemmer

Initialize stemmer
stemmer = PorterStemmer()

Example words
words = ["running", "flies", "dogs", "churches", "studying"]

Apply stemming
stemmed_words = [stemmer.stem(word) for word in words]
print(stemmed_words)
Output: ['run', 'fli', 'dog', 'church', 'studi']

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 13 / 25

Architecture Approach Input Output

Skip-gram Predict context from center word Center word Context words

CBOW Predict center word from context Context words Center word

Input: Center Word Hidden
Layer

Output: Context
Words

Softmax
Layer

Probability
Distribution

Illuminate the Word2vec technique in detail.

Answer:

Word2Vec is a neural network-based technique that learns dense vector representations of words by
predicting context.

Table: Word2Vec Architectures

Skip-gram Model:

Training Process:

1. Sliding Window: Move window across text

2. Word Pairs: Create (center, context) pairs

3. Neural Network: Train to predict context

4. Weight Matrix: Extract word vectors

Key Features:

Vector Size: Typically 100-300 dimensions

Window Size: Context range (usually 5-10 words)

Negative Sampling: Efficient training method

Hierarchical Softmax: Alternative to softmax

Mathematical Concept:

Applications:

Similarity: Find similar words

Analogies: King - Man + Woman = Queen

Clustering: Group semantic categories

Feature Engineering: ML input features

Advantages:

Dense Representations: Rich semantic information

Objective = max Σ log P(context|center)
Where P(context|center) = exp(v_context · v_center) / Σ exp(v_w · v_center)

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 14 / 25

Application Description

Spam Detection Identify unwanted emails

Sentiment Analysis Determine emotional tone

Machine Translation Translate between languages

Chatbots Automated conversation systems

Semantic Relationships: Captures word meanings

Arithmetic Properties: Vector operations make sense

Mnemonic: "W2V - Words to Vectors via neural networks"

Question 4(a) OR [3 marks]
List out any four applications of Natural Language Processing. Explain spam detection in detail.

Answer:

Table: NLP Applications

Spam Detection Details:

Process:

1. Feature Extraction: Convert email text to numerical features

2. Classification: Use ML algorithms to classify

3. Decision: Mark as spam or legitimate

Features Used:

Word Frequency: Spam keywords count

Email Headers: Sender information

URL Analysis: Suspicious links

Text Patterns: ALL CAPS, excessive punctuation

Machine Learning Approach:

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 15 / 25

Aspect Discourse Integration Pragmatic Analysis

Focus Text coherence and structure Context and intention

Scope Multiple sentences/paragraphs Speaker's intended meaning

Elements Anaphora, cataphora, connectives Implicature, speech acts

Goal Understand text flow Understand real meaning

Mnemonic: "SMTP - Spam, Machine Translation, Sentiment, Phishing detection"

Question 4(b) OR [4 marks]
Explain about discourse integration and pragmatic analysis.

Answer:

Table: Discourse Integration vs Pragmatic Analysis

Discourse Integration:

Anaphora Resolution: "John went to store. He bought milk." (He = John)

Cataphora: "Before he left, John locked the door."

Coherence: Logical flow between sentences

Cohesion: Grammatical connections

Pragmatic Analysis:

Speech Acts: Commands, requests, promises

Implicature: Implied meanings beyond literal

Context Dependency: Same words, different meanings

Intention Recognition: What speaker really means

Examples:

Discourse Integration:

Simplified spam detection
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

Convert emails to features
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(email_texts)

Train classifier
classifier = MultinomialNB()
classifier.fit(X, labels) # labels: 0=legitimate, 1=spam

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 16 / 25

Step Description Example

Vocabulary Creation Collect all unique words ["cat", "sat", "mat", "dog"]

Vector Creation Count word occurrences [1, 1, 1, 0] for "cat sat mat"

Document Representation Each document becomes a vector Multiple documents → Matrix

Pragmatic Analysis:

Mnemonic: "DP - Discourse connects, Pragmatics interprets context"

Question 4(c) OR [7 marks]
Discuss about the Bag of Words word embedding technique in detail.

Answer:

Bag of Words (BoW) is a simple text representation method that treats documents as unordered
collections of words.

Table: BoW Process

Example:

Python Implementation:

Text: "Mary owns a car. The vehicle is red."
Resolution: "vehicle" refers to "car"

Statement: "Can you pass the salt?"
Literal: Question about ability
Pragmatic: Request to pass salt

Documents:
1. "The cat sat on the mat"
2. "The dog ran in the park"

Vocabulary: [the, cat, sat, on, mat, dog, ran, in, park]

Document Vectors:
Doc1: [2, 1, 1, 1, 1, 0, 0, 0, 0]
Doc2: [2, 0, 0, 0, 0, 1, 1, 1, 1]

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 17 / 25

Advantages:

Simplicity: Easy to understand and implement

Interpretability: Clear word-count relationship

Effectiveness: Works well for many tasks

Disadvantages:

No Word Order: "cat sat mat" = "mat sat cat"

Sparse Vectors: Many zeros in large vocabularies

No Semantics: No understanding of word meanings

High Dimensionality: Scales with vocabulary size

Variations:

Binary BoW: 1 if word present, 0 if absent

TF-IDF BoW: Term frequency × Inverse document frequency

N-gram BoW: Consider word sequences

Applications:

Document Classification: Spam detection

Information Retrieval: Search engines

Text Clustering: Group similar documents

Feature Engineering: Input for ML models

Mnemonic: "BOW - Bag Of Words counts occurrences"

Question 5(a) [3 marks]
What is the role of activation functions in Neural Network?

Answer:

from sklearn.feature_extraction.text import CountVectorizer

documents = [
 "The cat sat on the mat",
 "The dog ran in the park"
]

vectorizer = CountVectorizer()
bow_matrix = vectorizer.fit_transform(documents)
vocab = vectorizer.get_feature_names_out()

print("Vocabulary:", vocab)
print("BoW Matrix:", bow_matrix.toarray())

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 18 / 25

Role Description

Non-linearity Enables learning complex patterns

Output Control Determines neuron firing threshold

Gradient Flow Affects backpropagation efficiency

Range Limiting Bounds output values

Component Function Example

Input Layer Receives input data Features/pixels

Hidden Layers Process information Pattern recognition

Output Layer Produces final result Classification/prediction

Connections Link neurons between layers Weighted edges

Table: Activation Function Roles

Key Functions:

Decision Making: Whether neuron should activate

Pattern Recognition: Enables complex decision boundaries

Signal Processing: Transforms weighted inputs

Common Activation Functions:

ReLU: f(x) = max(0, x) - Simple and efficient

Sigmoid: f(x) = 1/(1 + e^-x) - Smooth probability output

Tanh: f(x) = (e^x - e-x)/(ex + e^-x) - Zero-centered

Mnemonic: "NOGL - Non-linearity, Output control, Gradient flow, Limiting range"

Question 5(b) [4 marks]
Describe architecture of Neural Network in detail.

Answer:

Table: Neural Network Architecture Components

Architecture Diagram:

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 19 / 25

Input
Layer

Hidden Layer 1 Hidden Layer 2 Output Layer

X1 H1

X2 H2

Y1

Layer Details:

Input Layer: Number of neurons = number of features

Hidden Layers: Variable neurons, multiple layers for complexity

Output Layer: Number of neurons = number of classes/outputs

Information Flow:

1. Forward Pass: Input → Hidden → Output

2. Weighted Sum: Σ(wi × xi + bias)

3. Activation: Apply activation function

4. Output: Final prediction/classification

Mnemonic: "IHOC - Input, Hidden, Output, Connections"

Question 5(c) [7 marks]
List out and explain types of ambiguities in Natural Language Processing.

Answer:

Ambiguity in NLP occurs when text has multiple possible interpretations, making automatic understanding
challenging.

Table: Types of NLP Ambiguities

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 20 / 25

Type Definition Example Resolution

Lexical Word has multiple meanings "Bank" (river/financial) Context analysis

Syntactic Multiple parse structures "I saw her duck" Grammar rules

Semantic Multiple sentence meanings "Visiting relatives can be boring" Semantic analysis

Pragmatic Context-dependent meaning "Can you pass salt?" Intent recognition

Referential Unclear pronoun reference "John told Bill he was late" Anaphora resolution

Detailed Explanations:

Lexical Ambiguity:

Homonyms: Same spelling, different meanings

Example: "I went to the bank" (financial institution vs. river bank)

Solution: Word sense disambiguation using context

Syntactic Ambiguity:

Multiple Parse Trees: Same sentence, different structures

Example: "I saw the man with the telescope"

I used telescope to see man

I saw man who had telescope

Solution: Statistical parsing, grammar preferences

Semantic Ambiguity:

Multiple Interpretations: Same structure, different meanings

Example: "Visiting relatives can be boring"

Going to visit relatives is boring

Relatives who visit are boring

Solution: Semantic role labeling

Pragmatic Ambiguity:

Context-dependent: Meaning depends on situation

Example: "It's cold here" (statement vs. request to close window)

Solution: Dialogue systems, context modeling

Referential Ambiguity:

Unclear References: Pronouns with multiple possible antecedents

Example: "John told Bill that he was promoted" (who got promoted?)

Solution: Coreference resolution algorithms

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 21 / 25

Ambiguous Text

Context
Analysis

Statistical Models

Knowledge
Bases

Disambiguation Clear Interpretation

Function Formula Range Usage

ReLU f(x) = max(0, x) [0, ∞) Hidden layers

Sigmoid f(x) = 1/(1 + e^-x) (0, 1) Binary classification

Tanh f(x) = (e^x - e-x)/(ex + e^-x) (-1, 1) Hidden layers

Softmax f(xi) = e^xi / Σe^xj (0, 1) Multi-class output

Leaky ReLU f(x) = max(0.01x, x) (-∞, ∞) Solving dead neurons

Resolution Strategies:

Impact on NLP Systems:

Machine Translation: Wrong word choices

Information Retrieval: Irrelevant results

Question Answering: Incorrect responses

Chatbots: Misunderstood queries

Mnemonic: "LSSPR - Lexical, Syntactic, Semantic, Pragmatic, Referential"

Question 5(a) OR [3 marks]
List down the names of some popular activation functions used in Neural Network.

Answer:

Table: Popular Activation Functions

Popular Functions:

ReLU: Most commonly used in hidden layers

Sigmoid: Traditional choice for binary problems

Tanh: Zero-centered alternative to sigmoid

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 22 / 25

Step Process Description

Initialize Random weights Start with small random values

Forward Pass Calculate output Propagate input through network

Calculate Error Compare with target Use loss function

Backward Pass Calculate gradients Use backpropagation

Update Weights Adjust parameters Apply gradient descent

Repeat Iterate process Until convergence

No

YesInitialize Weights Forward Pass

Calculate Loss Backward
Pass

Update Weights

Converged? Training
Complete

Softmax: Standard for multi-class classification

Mnemonic: "RSTSL - ReLU, Sigmoid, Tanh, Softmax, Leaky ReLU"

Question 5(b) OR [4 marks]
Explain Learning process in artificial Neural Network.

Answer:

Learning Process in neural networks involves adjusting weights and biases to minimize error through
iterative training.

Table: Learning Process Steps

Learning Algorithm Flow:

Mathematical Foundation:

Loss Function: L = ½(target - output)²

Gradient: ∂L/∂w = error × input

Weight Update: w_new = w_old - η × gradient

Learning Rate: η controls update step size

Types of Learning:

Supervised: Learn from labeled examples

Batch Learning: Update after all samples

Online Learning: Update after each sample

Mini-batch: Update after small batches

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 23 / 25

Advantages Disadvantages

Automated Text Analysis Ambiguity Handling

Language Translation Context Understanding

Human-Computer Interaction Cultural Nuances

Information Extraction Computational Complexity

Sentiment Analysis Data Requirements

Key Concepts:

Epoch: One complete pass through training data

Convergence: When error stops decreasing

Overfitting: Memorizing training data

Regularization: Techniques to prevent overfitting

Mnemonic: "IFCBU - Initialize, Forward, Calculate, Backward, Update"

Question 5(c) OR [7 marks]
List out various advantages and disadvantages of Natural Language Processing.

Answer:

Table: NLP Advantages and Disadvantages

Detailed Advantages:

Business Benefits:

Customer Service: Automated chatbots and support

Content Analysis: Social media monitoring

Document Processing: Automated summarization

Search Enhancement: Better information retrieval

Technical Advantages:

Scalability: Process large text volumes

Consistency: Uniform analysis across documents

Speed: Faster than human text processing

Integration: Works with existing systems

Detailed Disadvantages:

Technical Challenges:

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 24 / 25

NLP Applications

Machine
Translation

Sentiment
Analysis

Information Extraction

NLP
Challenges

Ambiguity Context Understanding Cultural Nuances

Ambiguity: Multiple interpretations of text

Context Dependency: Meaning changes with situation

Sarcasm/Irony: Difficult to detect automatically

Domain Specificity: Models need retraining for new domains

Resource Requirements:

Large Datasets: Need millions of text samples

Computational Power: Complex models require GPUs

Expert Knowledge: Requires linguistics and ML expertise

Maintenance: Models need regular updates

Quality Issues:

Accuracy Limitations: Not 100% accurate

Bias Problems: Reflects training data biases

Language Barriers: Works better for some languages

Error Propagation: Mistakes compound in pipelines

Applications vs Challenges:

Future Improvements:

Better Context Models: Transformer architectures

Multilingual Support: Cross-language understanding

Few-shot Learning: Less data requirements

Explainable AI: Understanding model decisions

Mnemonic: "ALICE vs ACHDR - Automated, Language, Interaction, Content, Extraction vs Ambiguity,
Context, Human-nuances, Data, Resources"

Foundation of AI and ML (4351601) - Summer 2024 Solution by Milav Dabgar

No. 25 / 25

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

