Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Write down the difference between oop and pop.

Answer:

Aspect
Approach
Focus

Data Security

Problem Solving

ooP

Bottom-up approach

Objects and classes

Data hiding through encapsulation

Divide problem into objects

Mnemonic: "Objects Bottom, Procedures Top"

Question 1(b) [4 marks]

What is byte code? Explain JVM in detail.

Answer:

POP

Top-down approach
Functions and procedures
No data hiding

Divide problem into functions

Byte Code: Platform-independent intermediate code generated by Java compiler from source code.

Java Source Code

\ 4

Java Compiler Byte Code

» JVM

v

Machine

JVM Components:

® Class Loader: Loads .class files into memory

e Memory Area: Heap, stack, method area storage

e Execution Engine: Interprets and executes bytecode

e Garbage Collector: Automatic memory management

Mnemonic: "Byte Code Runs Everywhere"

Question 1(c) [7 marks]

Write a program in Java to sort the elements of an array in ascending order

Answer:

import java.util.Arrays;

public class ArraySort {

public static void main(String[] args) {

int[] arr

{64, 34, 25, 12, 22, 11, 90};

No.1/18




Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

// Bubble Sort
for(int i = 0; i < arr.length-1; i++) {
for(int j = 0; j < arr.length-i-1; j++) {
if(arr[j] > arr[j+1]) {
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;

System.out.println("Sorted array: + Arrays.toString(arr));

Key Points:
e Bubble Sort: Compares adjacent elements
e Time Complexity: O(n?)
e Space Complexity: O(1)

Mnemonic: "Bubble Up The Smallest"

Question 1(c OR) [7 marks]

Write a program in java to find out maximum from any ten numbers using command line argument.

Answer:

public class FindMaximum {
public static void main(String[] args) {
if (args.length != 10) {
System.out.println("Please enter exactly 10 numbers");

return;

int max = Integer.parseInt(args[0]);

for(int i = 1; i < args.length; i++) {
int num = Integer.parselnt(args[i]);
if (num > max) {

max = num;

System.out.println("Maximum number: " + max);

Key Points:

No. 2 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

e Command Line: args[] array stores arguments
e parselnt(): Converts string to integer

¢ Validation: Check array length

Mnemonic: "Arguments Maximum Search"

Question 2(a) [3 marks]

What is wrapper class? Explain with example.
Answer:

Wrapper Class: Converts primitive data types into objects.

Primitive Wrapper Class
int Integer

char Character
boolean Boolean
double Double

// Boxing

Integer obj = Integer.valueOf(10);
// Unboxing

int value = obj.intVvalue();

Mnemonic: "Wrap Primitives Into Objects"

Question 2(b) [4 marks]

List out different features of java. Explain any two.
Answer:
Java Features:

e Simple: Easy syntax, no pointers

¢ Platform Independent: Write once, run anywhere

® Object Oriented: Based on objects and classes

e Secure: No explicit pointers, bytecode verification
Detailed Explanation:

¢ Platform Independence: Java bytecode runs on any platform with JVM

® Object Oriented: Supports inheritance, encapsulation, polymorphism, abstraction

Mnemonic: "Simple Platform Object Security"

No. 3 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Question 2(c) [7 marks]

What is method overriding? Explain with example.

Answer:

Method Overriding: Child class provides specific implementation of parent class method.
class Animal {

public void sound() {

System.out.println("Animal makes sound");

class Dog extends Animal {
@Override
public void sound() {

System.out.println("Dog barks");

public class Test {
public static void main(String[] args) {
Animal a = new Dog();
a.sound(); // Output: Dog barks

Key Points:

e Runtime Polymorphism: Method called based on object type
e @Override: Annotation for method overriding

¢ Dynamic Binding: Method resolution at runtime

Mnemonic: "Child Changes Parent Method"

Question 2(a OR) [3 marks]

Explain Garbage collection in java.
Answer:

Garbage Collection: Automatic memory management that removes unused objects.

A 4
\ 4
A 4

Object Created

\ 4

Garbage Collector Memory

Object Object Unreferenced

Key Points:

e Automatic: No manual memory deallocation

e Mark and Sweep: Identifies and removes unused objects

No. 4 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

e Heap Memory: Works on heap memory area

Mnemonic: "Auto Clean Unused Objects"

Question 2(b OR) [4 marks]

Explain static keyword with example.

Answer:

Static Keyword: Belongs to class rather than instance.
class Student {

static String college = "GTU"; // Static variable

String name;

static void showCollege() { // Static method

System.out.println("College: + college);

Static Features:

e Memory: Loaded at class loading time
e Access: Can be accessed without object

e Sharing: Shared among all instances

Mnemonic: "Class Level Memory Sharing"

Question 2(c OR) [7 marks]

What is constructor? Explain copy constructor with example.
Answer:

Constructor: Special method to initialize objects.

class Person {
String name;

int age;

// Default constructor
Person() {
name = "Unknown";

age = 0;

// Parameterized constructor
Person(String n, int a) {
name = n;

age = a;

No.5 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

// Copy constructor
Person(Person p) {
name = p.name;

age = p.age;

Constructor Types:

e Default: No parameters
e Parameterized: Takes parameters

e Copy: Creates object from existing object

Mnemonic: "Default Parameter Copy"

Question 3(a) [3 marks]

Explain super keyword with example.
Answer:

Super Keyword: References parent class members.

class Vehicle {

String brand = "Generic";

class Car extends Vehicle {

String brand = "Toyota";

void display() {
System.out.println("Child: " + brand);

System.out.println("Parent: + super.brand);

Super Uses:

e Variables: Access parent class variables
e Methods: Call parent class methods

e Constructor: Call parent class constructor

Mnemonic: "Super Calls Parent"

Question 3(b) [4 marks]

List out different types of inheritance. Explain multilevel inheritance.

Answer:

No. 6 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Inheritance Types:

Type Description

Single One parent, one child
Multilevel Chain of inheritance
Hierarchical One parent, multiple children
Multiple Multiple parents (via interfaces)

Multilevel Inheritance:

class Animal {

void eat() { System.out.println("Eating"); }

class Mammal extends Animal {

void breathe() { System.out.println("Breathing"); }

class Dog extends Mammal {

void bark() { System.out.println("Barking"); }

Mnemonic: "Single Multi Hierarchical Multiple"

Question 3(c) [7 marks]

What is interface? Explain multiple inheritance with example.
Answer:

Interface: Contract that defines what class must do, not how.

interface Flyable {
void fly();

interface Swimmable {

void swim();

class Duck implements Flyable, Swimmable {
public void fly() {
System.out.println("Duck is flying");

public void swim() {

System.out.println("Duck is swimming");

No.7 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Interface Features:

e Multiple Inheritance: Class can implement multiple interfaces
e Abstract Methods: All methods are abstract by default

e Constants: All variables are public, static, final

Mnemonic: "Multiple Abstract Constants"

Question 3(a OR) [3 marks]

Explain final keyword with example.
Answer:

Final Keyword: Restricts modification, inheritance, or overriding.

final class Math { // Cannot be inherited
final int PI = 3.14; // Cannot be modified

final void calculate() { // Cannot be overridden

System.out.println("Calculating");

Final Uses:

e Class: Cannot be extended
e Method: Cannot be overridden

e Variable: Cannot be reassigned

Mnemonic: "Final Stops Changes"

Question 3(b OR) [4 marks]

Explain different access controls in Java.
Answer:

Access Modifiers:

No. 8 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Modifier Same Class Same Package Subclass Different Package
public v v v v
protected v 4 v X
default v v X X
private v X X X

Mnemonic: "Public Protected Default Private"

Question 3(c OR) [7 marks]

What is package? Write steps to create a package and give example of it.
Answer:

Package: Group of related classes and interfaces.

Steps to Create Package:

1. Declare: Use package statement at top
2. Compile: javac -d . ClassName.java

3. Run: java packagename.ClassName

// File: mypack/Calculator.java
package mypack;

public class Calculator {
public int add(int a, int b) {

return a + b;

// File: Test.java

import mypack.Calculator;

public class Test {
public static void main(String[] args) {
Calculator calc = new Calculator();

System.out.println(calc.add(5, 3));

Package Benefits:

e Organization: Groups related classes
e Access Control: Package-level protection

* Namespace: Avoids naming conflicts

No.9/18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Mnemonic: "Declare Compile Run"

Question 4(a) [3 marks]

Explain thread priorities with suitable example.
Answer:

Thread Priority: Determines thread execution order (1-10 scale).

class MyThread extends Thread {
public void run() {
System.out.println(getName() + " Priority: " + getPriority());

public class ThreadPriorityExample {
public static void main(String[] args) {
MyThread tl
MyThread t2 = new MyThread();

new MyThread();

tl.setPriority(Thread.MIN PRIORITY); // 1
t2.setPriority(Thread.MAX PRIORITY); // 10

tl.start();
t2.start();

Priority Constants:

e MIN_PRIORITY: 1
e NORM_PRIORITY: 5
e MAX_PRIORITY: 10

Mnemonic: "Min Normal Max"

Question 4(b) [4 marks]

What is Thread? Explain Thread life cycle.
Answer:

Thread: Lightweight process for concurrent execution.

No. 10 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

notify(),
Blocked
it(), sl
start() wait(), sleep()
CPU aIIocatlonW

complete—)@

Thread States:

* New: Thread created but not started
e Runnable: Ready to run

e Running: Currently executing

e Blocked: Waiting for resource

e Dead: Execution completed

Mnemonic: "New Runnable Running Blocked Dead"

Question 4(c) [7 marks]

Write a program in java that create the multiple threads by implementing the Runnable interface.

Answer:

class MyRunnable implements Runnable {

private String threadName;

MyRunnable(String name) {

threadName = name;

public void run() {
for(int i = 1; i <= 5; i++) {

System.out.println(threadName +
try {

Thread.sleep(1000);
} catch(InterruptedException e) {

- Count: " + i);

e.printStackTrace();

public class MultipleThreads {
public static void main(String[] args) {
Thread tl = new Thread(new MyRunnable("Thread-1"));
Thread t2 = new Thread(new MyRunnable("Thread-2"));
Thread t3 = new Thread(new MyRunnable("Thread-3"));

No. 11 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

tl.start();
t2.start();
t3.start();
}
}
Key Points:

¢ Runnable Interface: Better than extending Thread class
¢ Thread.sleep(): Pauses thread execution

e Multiple Threads: Run concurrently

Mnemonic: "Implement Runnable Start Multiple"

Question 4(a OR) [3 marks]

List four different inbuilt exceptions. Explain any one inbuilt exception.
Answer:

Inbuilt Exceptions:

NullPointerException: Accessing null object

ArraylndexOutOfBoundsException: Invalid array index

ArithmeticException: Division by zero

NumberFormatException: Invalid number format

ArithmeticException: Thrown when arithmetic operation fails.
int result = 10 / 0; // Throws ArithmeticException

Mnemonic: "Null Array Arithmetic Number"

Question 4(b OR) [4 marks]

Explain Try and Catch with suitable example.
Answer:

Try-Catch: Exception handling mechanism.

public class TryCatchExample {
public static void main(String[] args) {
try {
int[] arr = {1, 2, 3};
System.out.println(arr[5]); // Index out of bounds
}
catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index error: " + e.getMessage());

No. 12 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

finally {
System.out.println("Always executed");

Exception Handling Flow:
e Try: Code that may throw exception
e Catch: Handles specific exceptions

¢ Finally: Always executes

Mnemonic: "Try Catch Finally"

Question 4(c OR) [7 marks]

What is Exception? Write a program that show the use of Arithmetic Exception.

Answer:
Exception: Runtime error that disrupts normal program flow.
public class ArithmeticExceptionExample {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

try {
System.out.print("Enter first number: ");
int numl = sc.nextInt();
System.out.print("Enter second number: ");
int num2 = sc.nextInt();

int result = numl / num2;
System.out.println("Result: " + result);
}
catch(ArithmeticException e) {
System.out.println("Error: Cannot divide by zero!");
}
catch(Exception e) {
System.out.println("General error: " + e.getMessage());

}

finally {
sc.close();

}

Exception Types:

e Checked: Compile-time exceptions

No. 13 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

e Unchecked: Runtime exceptions

e Error: System-level problems

Mnemonic: "Runtime Error Disrupts Flow"

Question 5(a) [3 marks]

Explain ArraylndexOutOfBound Exception in Java with example.

Answer:

ArraylndexOutOfBoundsException: Thrown when accessing invalid array index.

public class ArrayIndexExample {
public static void main(String[] args) {
int[] numbers = {10, 20, 30};

try {
System.out.println(numbers[5]); // Invalid index

}
catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Invalid array index:

Key Points:

¢ Valid Range: 0 to array.length-1
¢ Negative Index: Also throws exception

e Runtime Exception: Unchecked exception

Mnemonic: "Array Index Range Check"

Question 5(b) [4 marks]

Explain basics of stream classes.
Answer:

Stream Classes: Handle input/output operations.

Stream Type Classes

Byte Streams InputStream, OutputStream
Character Streams Reader, Writer

File Streams FileInputStream, FileOutputStream
Buffered Streams BufferedReader, BufferedWriter

No. 14 /18

+ e.getMessage());



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Stream Classes

Byte

InputStream

OutputStream

Stream Features:

e Sequential: Data flows in sequence

e One Direction: Either input or output

e Automatic: Handles low-level details

Mnemonic: "Byte Character File Buffered"

Question 5(c) [7 marks]

Write a java program to create a text file and perform read operation on the text file.

Answer:

import java.io.*;

public class FileReadExample {
public static void main(St

// Create and write to

try {

FileWriter writer
writer.write("Hell
writer.write("Java
writer.write("GTU

writer.close();

ring[] args) {
file

Character

N

Reader

Writer

= new FileWriter("sample.txt");

o World!\n");
File Handling\n");
Exam 2024");

System.out.println("File created successfully");

}
catch(IOException e) {

System.out.println("Error creating file:

// Read from file
try {

+ e.getMessage());

BufferedReader reader = new BufferedReader (new FileReader("sample.txt"));

String line;

No. 15 /18




Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

System.out.println("\nFile contents:");
while((line = reader.readLine()) != null) {

System.out.println(line);

}

reader.close();

}
catch(IOException e) {

"

System.out.println("Error reading file: + e.getMessage());

Key Points:
e FileWriter: Creates and writes to file

¢ BufferedReader: Efficient reading

e Exception Handling: Handle IOException

Mnemonic: "Create Write Read Close"

Question 5(a OR) [3 marks]

Explain Divide by Zero Exception in Java with example.

Answer:

ArithmeticException: Thrown during divide by zero operation.

public class DivideByZeroExample {

public static void main(String[] args) {

try {
int a = 10;
int b = 0;

int result = a / b; // Throws ArithmeticException

System.out.println("Result: " + result);

}

catch(ArithmeticException e) {

System.out.println("Cannot divide by zero: + e.getMessage());

Key Points:
¢ Integer Division: Only integer division by zero throws exception
¢ Floating Point: Returns Infinity for floating point division

¢ Runtime Exception: Unchecked exception

Mnemonic: "Zero Division Arithmetic Error"

No. 16 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

Question 5(b OR) [4 marks]

Explain java I/0 process.
Answer:

Java I/0 Process: Mechanism for reading and writing data.

Output > Data

A

Data Source > Input Stream > Java Program

I/0 Components:
e Stream: Sequence of data
e Buffer: Temporary storage for efficiency
® File: Persistent storage
¢ Network: Remote data transfer
1/0 Types:
e Byte-oriented: Raw data (images, videos)
¢ Character-oriented: Text data
e Synchronous: Blocking operations

¢ Asynchronous: Non-blocking operations

Mnemonic: "Stream Buffer File Network"

Question 5(c OR) [7 marks]

Write a java program to create a text file and perform write operation on the text file.

Answer:

import java.io.*;

import java.util.Scanner;

public class FileWriteExample {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

try {
// Create file with FileWriter

FileWriter writer = new FileWriter("student.txt");
System.out.println("Enter student details:");
System.out.print("Name: ");

String name = sc.nextLine();

System.out.print("Roll Number: ");

No. 17 /18



Object Oriented Programming with JAVA (4341602) - Winter 2024 Solution by Milav Dabgar

String rollNo = sc.nextLine();

System.out.print("Branch: ");
String branch = sc.nextLine();

// Write data to file

writer.write("Student Information\n");

writer.write(" \n");

"

writer.write("Name: + name + "\n");
writer.write("Roll Number: " + rollNo + "\n");
writer.write("Branch: " + branch + "\n");

writer.write("Date: " + new java.util.Date() + "\n");

writer.close();
System.out.println("\nData written to file successfully!");

}
catch(IOException e) {

System.out.println("Error writing to file: + e.getMessage());

}
finally {
sc.close();
}
}
}
Key Points:

e FileWriter: Writes character data to file
e BufferedWriter: More efficient for large data

e Auto-close: Use try-with-resources for automatic closing

Mnemonic: "Create Write Close Handle"

No. 18 /18



	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

