Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Question 1(a) [3 marks]

List out basic concepts of oop. Explain any one in detail.

Answer:

Basic OOP Concepts
Class

Object
Encapsulation
Inheritance
Polymorphism

Abstraction

Description

Blueprint for objects

Instance of a class

Data hiding mechanism
Acquiring properties from parent
One interface, multiple forms

Hiding implementation details

Encapsulation is the process of binding data and methods together within a class and hiding internal
implementation from outside world. It provides data security by making variables private and accessing
them through public methods.

Mnemonic: "CEO-IPA" (Class, Encapsulation, Object, Inheritance, Polymorphism, Abstraction)

Question 1(b) [4 marks]

Explain JVM in detail.

Answer:

Java Source Code

Java

Bytecode JVM Machine

Output

JVM (Java Virtual Machine) is a runtime environment that executes Java bytecode. It provides platform
independence by converting bytecode to machine-specific code.

e Class Loader: Loads class files into memory

e Memory Management: Handles heap and stack memory

e Execution Engine: Executes bytecode instructions

e Garbage Collector: Automatically manages memory

Mnemonic: "CMEG" (Class loader, Memory, Execution, Garbage collection)

Question 1(c) [7 marks]

Write a program in java to print Fibonacci series for n terms.

Answer:

No.1/18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

public class Fibonacci ({
public static void main(String[] args) {
int n = 10, first = 0, second = 1;

System.out.print("Fibonacci Series: " + first + " " + second);

for(int i = 2; i < n; i++) {
int next = first + second;

"

System.out.print (" + next);
first = second;

second = next;

Logic: Start with 0,1 and add previous two numbers

Loop: Continues for n terms

Variables: first, second, next for calculation

Mnemonic: "FSN" (First, Second, Next)

Question 1(c OR) [7 marks]

Write a program in java to find out minimum from any ten numbers using command line argument.

Answer:

public class FindMinimum {
public static void main(String[] args) {
if (args.length != 10) {
System.out.println("Please enter exactly 10 numbers");

return;

int min = Integer.parseInt(args[0]);

for(int i = 1; i < args.length; i++) {
int num = Integer.parselnt(args[i]);
if(num < min) {

min = num;

}

System.out.println("Minimum number: " + min);

Command Line: java FindMinimum 5381927460

Logic: Compare each number with current minimum

Method: Integer.parselnt() converts string to integer

Mnemonic: "CIM" (Check, Integer.parselnt, Minimum)

No. 2 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Question 2(a) [3 marks]

What is wrapper class? Explain with example.

Answer:
Primitive Wrapper Class
int Integer
char Character
boolean Boolean
double Double

Wrapper classes convert primitive data types into objects. They provide utility methods and enable
primitives to be used in collections.

Example: Integer obj = new Integer(25); Or Integer obj = 25; (autoboxing)

Mnemonic: "POC" (Primitive to Object Conversion)

Question 2(b) [4 marks]

List out different features of java. Explain any two.

Answer:
Java Features Description
Platform Independent Write once, run anywhere
Object Oriented Everything is an object
Simple Easy syntax, no pointers
Secure Bytecode verification
Robust Strong memory management
Multithreaded Concurrent execution

Platform Independence: Java source code compiles to bytecode which runs on any platform with JVM
installed.

Object Oriented: Java follows OOP principles like encapsulation, inheritance, and polymorphism for better
code organization.

Mnemonic: "POSSMR" (Platform, Object, Simple, Secure, Multithreaded, Robust)

Question 2(c) [7 marks]

No. 3 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

What is method overload? Explain with example.
Answer:
Method Overloading allows multiple methods with same name but different parameters in the same

class.

class Calculator {
public int add(int a, int b) {

return a + b;

public double add(double a, double b) {

return a + b;

public int add(int a, int b, int c) {

return a + b + c;

¢ Rules: Different parameter types or number of parameters
e Compile Time: Decision made during compilation

e Return Type: Cannot be only difference

Mnemonic: "SNRT" (Same Name, different paRameters, compile Time)

Question 2(a OR) [3 marks]

Explain Garbage collection in java.

Answer:

Memory Areas:

[1

| Heap | « Objects stored here
| |

I |

| Stack | < Method calls

| |

| |

| Method | « Class definitions

| Area |

[|

Garbage Collection automatically deallocates memory of unreferenced objects. JVM runs garbage collector
periodically to free up heap memory.

e Automatic: No manual memory management needed

e Mark and Sweep: Marks unreferenced objects, then removes them

Mnemonic: "ARMS" (Automatic Reference Management System)

No. 4 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Question 2(b OR) [4 marks]

Explain final keyword with example.

Answer:
Usage Description Example
final variable Cannot be changed final int x = 10;
final method Cannot be overridden final void display()
final class Cannot be inherited final class MyClass
Example:

final class FinalClass {
final int value = 100;
final void show() {

System.out.println("Final method");

Mnemonic: "VCM" (Variable constant, Class not inherited, Method not overridden)

Question 2(c OR) [7 marks]

What is constructor? Explain parameterized constructor with example.
Answer:

Constructor is a special method that initializes objects when created. It has same name as class and no
return type.

class Student {
String name;

int age;

// Parameterized Constructor
public Student(String n, int a) {
name = n;

age = a;

public void display() {

System.out.println("Name: + name + ", Age: + age);

class Main {
public static void main(String[] args) {

No.5 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Student sl = new Student("John", 20);
sl.display();

e Purpose: Initialize object with specific values

Parameters: Accepts arguments to set initial state

Automatic: Called automatically when object is created

Mnemonic: "SPA" (Same name, Parameters, Automatic call)

Question 3(a) [3 marks]

Explain super keyword with example.
Answer:

super keyword refers to parent class members and constructor. It resolves naming conflicts between
parent and child classes.

class Parent {
int x = 10;
}
class Child extends Parent {
int x = 20;
void display() {
System.out.println(super.x); // 10
System.out.println(x); // 20

e super.variable: Access parent class variable

e super.method(): Call parent class method

super(): Call parent class constructor

Mnemonic: "VMC" (Variable, Method, Constructor)

Question 3(b) [4 marks]

List out different types of inheritance. Explain multilevel inheritance.

Answer:

No. 6 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Inheritance Types Description

Single One parent, one child
Multilevel Chain of inheritance
Hierarchical One parent, multiple children
Multiple Multiple parents (via interfaces)

Animal —> Mammal —> Dog

Multilevel Inheritance: Class inherits from another class which itself inherits from another class, forming a
chain.

class Animal {
void eat() { System.out.println("Eating"); }
}

class Mammal extends Animal {

void walk() { System.out.println("Walking"); }
}

class Dog extends Mammal {

void bark() { System.out.println("Barking"); }

Mnemonic: "SMHM" (Single, Multilevel, Hierarchical, Multiple)

Question 3(c) [7 marks]

What is interface? Explain multiple inheritance with example.
Answer:
Interface is a contract that defines what methods a class must implement. It contains only abstract

methods and constants.

interface Flyable {
void fly();

interface Swimmable {

void swim();

class Duck implements Flyable, Swimmable {
public void fly() {
System.out.println("Duck is flying");

No.7 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

public void swim() {

System.out.println("Duck is swimming");

Multiple Inheritance: A class can implement multiple interfaces, achieving multiple inheritance of
behavior.

e Abstract Methods: All methods are abstract by default

e Constants: All variables are public, static, final

e implements: Keyword to implement interface

Mnemonic: "ACI" (Abstract methods, Constants, implements keyword)

Question 3(a OR) [3 marks]

Explain static keyword with example.
Answer:

static keyword creates class-level members that belong to class rather than instances. Memory allocated
once when class loads.

class Counter {
static int count = 0;
static void increment() {

count++;

e static variable: Shared among all objects
e static method: Called without object creation

¢ Memory: Allocated in method area

Mnemonic: "SOM" (Shared, Object not needed, Method area)

Question 3(b OR) [4 marks]

Explain different access controls in Java.

Answer:

No. 8 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Access Modifier Same Class Same Package Subclass Different Package
private v X X X
default v 4 X X
protected v v v X
public v v v v

Access Control determines visibility and accessibility of classes, methods, and variables.

Mnemonic: "PriDef ProPub" (Private, Default, Protected, Public)

Question 3(c OR) [7 marks]

What is package? Write steps to create a package and give example of it.

Answer:

Package is a namespace that organizes related classes and interfaces. It provides access protection and
namespace management.

Steps to create package:

1. Use package statement at top of file

2. Create directory structure matching package name
3. Compile with -d option
4

. Import package in other files

// File: com/mycompany/MyClass.java

package com.mycompany;

public class MyClass {
public void display() {

System.out.println("Package example");

// Using the package

import com.mycompany.MyClass;
class Main {
public static void main(String[] args) {

MyClass obj = new MyClass();
obj.display();

Compilation: javac -d . MyClass.java

No.9/18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Mnemonic: "PDCI" (Package statement, Directory, Compile, Import)

Question 4(a) [3 marks]

Explain thread priorities with suitable example.
Answer:
Thread Priority determines execution order of threads. Java provides 10 priority levels from 1 (lowest) to

10 (highest).

class MyThread extends Thread ({
public void run() {
System.out.println(getName() + " Priority: " + getPriority());

class Main {
public static void main(String[] args) {
MyThread tl1 = new MyThread();
MyThread t2 = new MyThread();

tl.setPriority(Thread.MIN PRIORITY); // 1
t2.setPriority(Thread.MAX PRIORITY); // 10

tl.start();
t2.start();

Priority Constants: MIN_PRIORITY (1), NORM_PRIORITY (5), MAX_PRIORITY (10)

Mnemonic: "MNM" (MIN, NORM, MAX)

Question 4(b) [4 marks]

What is Thread? Explain Thread life cycle.

Answer:

notify/timeout
/ Blocked
New start() yield() wait/sleep

Scheduler completes

Thread is a lightweight subprocess that enables concurrent execution within a program.

Thread Life Cycle States:

No. 10 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

e New: Thread created but not started

¢ Runnable: Ready to run, waiting for CPU
* Running: Currently executing

¢ Blocked: Waiting for resource or 1/0

e Dead: Thread execution completed

Mnemonic: "NRRBD" (New, Runnable, Running, Blocked, Dead)

Question 4(c) [7 marks]

Write a program in java that create the multiple threads by implementing the Thread class.

Answer:

class MyThread extends Thread ({

private String threadName;

public MyThread(String name) {
threadName = name;

setName (threadName) ;

public void run() {
for(int i = 1; i <= 5; i++) {

n

System.out.println(threadName + - Count: " + i);

try {
Thread.sleep(1000);

} catch(InterruptedException e) {
System.out.println(threadName + " interrupted");

}

System.out.println(threadName +

"

completed");

class Main {
public static void main(String[] args) {
MyThread threadl new MyThread("Thread-1");
MyThread thread2 = new MyThread("Thread-2");
MyThread thread3 new MyThread("Thread-3");

threadl.start();
thread2.start();
thread3.start();

e extends Thread: Inherit Thread class functionality

e Override run(): Define thread execution logic

No. 11 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

e start(): Begin thread execution

Mnemonic: "EOS" (Extends, Override run, Start method)

Question 4(a OR) [3 marks]

List four different inbuilt exceptions. Explain any one inbuilt exception.

Answer:
Inbuilt Exceptions Description
NullPointerException Null reference access
ArrayindexOutOfBoundsException Invalid array index
NumberFormatException Invalid number format
ClassCastException Invalid type casting

NullPointerException occurs when trying to access methods or variables of a null reference.

String str null;

int length = str.length(); // Throws NullPointerException

Mnemonic: "NANC" (NullPointer, Arraylndex, NumberFormat, ClassCast)

Question 4(b OR) [4 marks]

Explain multiple catch with suitable example.
Answer:

Multiple catch blocks handle different types of exceptions that might occur in try block. Each catch handles
specific exception type.

class MultipleCatch {
public static void main(String[] args) {
try {
int[] arr = {1, 2, 3};
System.out.println(arr[5]); // ArrayIndexOutOfBoundsException
int result = 10/0; // ArithmeticException

}
catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index error: + e.getMessage());

}
catch(ArithmeticException e) {
System.out.println("Arithmetic error: " + e.getMessage());

}

catch(Exception e) {

System.out.println("General error: + e.getMessage());

No. 12 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Order: Specific exceptions first, general exceptions last

Mnemonic: "SGO" (Specific first, General last, Ordered)

Question 4(c OR) [7 marks]

What is Exception? Write a program that show the use of Arithmetic Exception.

Answer:

Exception is an abnormal condition that disrupts normal program flow. It's an object representing an error
condition.

class ArithmeticExceptionDemo {
public static void main(String[] args) {
int numerator = 100;
int[] denominators = {5, 0, 2, 0, 10};

for(int i = 0; i < denominators.length; i++) {

try {
int result = numerator / denominators[i];

System.out.println(numerator + " / " + denominators[i] + = " + result);

}

catch(ArithmeticException e) {
System.out.println("Error: Cannot divide by zero!");

System.out.println("Exception message: + e.getMessage());

System.out.println("Program continues after exception handling");

ArithmeticException thrown when mathematical error occurs like division by zero.
Exception Hierarchy: Object — Throwable — Exception — RuntimeException — ArithmeticException

Mnemonic: "OTERRA" (Object, Throwable, Exception, RuntimeException, ArithmeticException)

Question 5(a) [3 marks]

Explain ArraylndexOutOfBound Exception in Java with example.
Answer:

ArraylndexOutOfBoundsException occurs when accessing array element with invalid index (negative or
>= array length).

No. 13 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

class ArrayException {

public static void main(String[] args) {

int[] numbers = {10,

try {

20, 30};

System.out.println(numbers([5]);

}

// Invalid index

catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Invalid array index:

Valid Range: O to (length-1)

Runtime Exception: Unchecked exception

e Common Cause: Loop condition errors

Mnemonic: "VRC" (Valid range, Runtime exception, Common in loops)

Question 5(b) [4 marks]

Explain basics of stream classes.

Answer:

Stream Classes

Byte

InputStream

" + e.getMessage());

Character

OutputStream

Reader

Stream Classes provide input/output operations for reading and writing data.

Stream Type

Byte Streams

Character Streams

Purpose
Binary data

Text data

e Input Streams: Read data from source

Base Classes

Writer

InputStream, OutputStream

Reader, Writer

No. 14 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

e Output Streams: Write data to destination

e Buffered Streams: Improve performance with buffering

Mnemonic: "BIOC" (Byte, Input/Output, Character streams)

Question 5(c) [7 marks]

Write a java program to create a text file and perform read operation on the text file.

Answer:

import java.io.*;

class FileOperations {
public static void main(String[] args) {
// Create and write to file

try {
FileWriter writer = new FileWriter("sample.txt");

writer.write("Hello World!\n");

writer.write("This is Java file handling example.\n");
writer.write("Learning Input/Output operations.");
writer.close();

System.out.println("File created and written successfully.");

}
catch(IOException e) {
System.out.println("Error creating file: " + e.getMessage());

// Read from file

try {
FileReader reader = new FileReader("sample.txt");

BufferedReader bufferedReader = new BufferedReader (reader);

String line;

System.out.println("\nFile contents:");
while((line = bufferedReader.readLine()) != null) {

System.out.println(line);

bufferedReader.close();

reader.close();

}
catch(IOException e) {

System.out.println("Error reading file: " + e.getMessage());
}

e FileWriter: Creates and writes to text file

¢ FileReader: Reads from text file

No. 15 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

e BufferedReader: Efficient line-by-line reading

Mnemonic: "WRB" (Writer creates, Reader reads, Buffered for efficiency)

Question 5(a OR) [3 marks]

Explain Divide by Zero Exception in Java with example.

Answer:

ArithmeticException (Divide by Zero) occurs when integer is divided by zero. Floating-point division by
zero returns Infinity.

class DivideByZeroExample ({
public static void main(String[] args) {

try {
int result = 10 / 0; // Throws ArithmeticException

System.out.println("Result: " + result);

}

catch(ArithmeticException e) {

System.out.println("Cannot divide by zero!");

// Floating point division
double floatResult = 10.0 / 0.0; // Returns Infinity
System.out.println("Float result: " + floatResult);

e Integer Division: Throws ArithmeticException

¢ Float Division: Returns Infinity or NaN

Mnemonic: "IFI" (Integer throws exception, Float returns Infinity)

Question 5(b OR) [4 marks]

Explain java I/0 process.

Answer:

Java I/O Process:

[1 [] []

| Source |———>| Stream |———>| Destination |

| (File, | | (Reader/ | | (EiSe), |

| Keyboard, | | Writer, | | Screen, |

| Network) | | Input/Output| | Network) |

I | | Stream) | I I
| |

Java I/0 Process handles data transfer between program and external sources using streams.

No. 16 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

Component Purpose

Source Data origin (file, keyboard, network)
Stream Data pathway (byte/character streams)
Destination Data target (file, screen, network)

Process Steps:
1. Open Stream: Create connection to source/destination
2. Process Data: Read/write operations

3. Close Stream: Release resources

Mnemonic: "OPC" (Open, Process, Close)

Question 5(c OR) [7 marks]

Write a java program to display the content of a text file and perform append operation on the text
file.

Answer:

import java.io.*;

class FileAppendExample {
public static void main(String[] args) {

String fileName = "data.txt";

// Create initial file content

try {
FileWriter writer = new FileWriter(fileName);
writer.write("Initial content line 1\n");
writer.write("Initial content line 2\n");
writer.close();
System.out.println("Initial file created.");

}
catch(IOException e) {

System.out.println("Error creating file: " + e.getMessage());
}

// Display file content
displayFileContent (fileName);

// Append to file

try {
FileWriter appendWriter = new FileWriter(fileName, true); // true for append

appendWriter.write("Appended line 1\n");
appendWriter.write("Appended line 2\n");
appendWriter.close();

System.out.println("\nContent appended successfully.");

No. 17 /18

Object Oriented Programming with Java (4341602) - Winter 2023 Solution by Milav Dabgar

}
catch(IOException e) {

System.out.println("Error appending to file: " + e.getMessage());
}

// Display updated content
System.out.println("\nFile content after append:");

displayFileContent (fileName);

static void displayFileContent(String fileName) {
try {

BufferedReader reader = new BufferedReader (new FileReader(fileName));
String line;
System.out.println("\nFile contents:");
while((line = reader.readLine()) != null) {
System.out.println(line);

}

reader.close();

}
catch(IOException e) {

System.out.println("Error reading file: + e.getMessage());

FileWriter(filename, true): Append mode enabled

displayFileContent(): Reusable method for reading

BufferedReader: Efficient line reading

Mnemonic: "ARB" (Append mode, Reusable method, Buffered reading)

No. 18 /18

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

