Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

What is Scrum model? Write about it.
Answer:

Scrum is an agile framework for managing software development projects through iterative and
incremental practices.

Aspect Description

Framework Type Agile methodology

Sprint Duration 2-4 weeks typically

Team Size 5-9 members

Key Ceremonies Daily standups, Sprint planning, Sprint review, Retrospective

Key Features:
e Product Owner: Defines requirements and priorities
e Scrum Master: Facilitates process and removes obstacles

e Development Team: Cross-functional team building the product

Mnemonic: "SPIR" - Sprint, Product owner, Incremental delivery, Review

Question 1(b) [4 marks]

Define Software and Explain Software Characteristics.
Answer:

Software Definition: A collection of computer programs, procedures, and documentation that performs
tasks on a computer system.

Characteristic Description

Intangible Cannot be touched physically

No Physical Wear Doesn't deteriorate with time

Custom Built Developed for specific requirements

Expensive High development and maintenance costs
Key Points:

® Logical Product: Made of instructions and data

e Engineered: Follows systematic development process

No. 1/30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

e Complex: Handles multiple interconnected functions

¢ Maintainable: Can be modified and updated

Mnemonic: "I[ELM" - Intangible, Engineered, Logical, Maintainable

Question 1(c) [7 marks]

Explain Waterfall Model with diagram.
Answer:

The Waterfall Model is a linear sequential software development approach where each phase must be
completed before the next begins.

Requirements Analysis System Design Implementation Testing Deployment Maintenance

Phase Activities Output

Requirements Gather and document needs SRS Document

Design System architecture planning Design specs

Implementation Actual coding Source code

Testing Verification and validation Test reports

Deployment Installation at client site Working system

Maintenance Bug fixes and updates Updated system
Advantages:

e Simple to understand and implement
e Well-documented phases

e Easy project management with clear milestones
Disadvantages:

e No flexibility for requirement changes
e Late testing discovery of issues

e Not suitable for complex projects

Mnemonic: "RSITDM" - Requirements, System design, Implementation, Testing, Deployment, Maintenance

Question 1(c) OR [7 marks]

Explain Spiral Model with diagram.

No. 2 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Answer:

The Spiral Model combines iterative development with systematic risk assessment, emphasizing risk

analysis in each iteration.

Risk Assessment

Customer

Define objectives
Minimize uncertainties

Build working software

Planning
e
Risk Prototype
Engineering
A
Customer Evaluation

Quadrant Activity Purpose
Planning Requirement gathering
Risk Analysis Identify and resolve risks
Engineering Development and testing
Evaluation Customer assessment

Key Features:

e Risk-driven approach with early risk identification
* |terative development with customer involvement
e Prototyping in each spiral

e Suitable for large and complex projects

Advantages:

e Early risk detection and mitigation
e Customer involvement throughout development

¢ Flexible to accommodate changes

No. 3 /30

Get feedback for next iteration



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Disadvantages:
e Complex management due to risk analysis
e Expensive for small projects

e Requires expertise in risk assessment

Mnemonic: "PRICE" - Planning, Risk analysis, Iterative, Customer evaluation, Engineering

Question 2(a) [3 marks]

In which situation prototype model is used?
Answer:

The Prototype Model is used when requirements are unclear or when demonstrating feasibility is crucial.

Situation Application

Unclear Requirements When user needs are not well-defined
New Technology Testing feasibility of new tools/platforms
User Interface Designing complex UI/UX systems

High Risk Projects Reducing uncertainties early

Specific Use Cases:

* Web applications with complex user interactions
e Real-time systems requiring performance validation

e AI/ML projects with experimental algorithms

Mnemonic: "UNIT" - Unclear requirements, New technology, Interface design, Testing feasibility

Question 2(b) [4 marks]

Explain requirement gathering in detail.
Answer:

Requirement Gathering is the process of collecting, analyzing, and documenting software requirements
from stakeholders.

No. 4 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Technique
Interviews
Questionnaires
Observation

Workshops

Process Steps:

Description When to Use

One-on-one discussions Detailed requirements
Structured surveys Large user groups
Watching current processes Understanding workflows
Group sessions Collaborative requirements

e Stakeholder Identification: Find all relevant parties

¢ Information Collection: Use various gathering techniques

e Analysis: Prioritize and categorize requirements

e Documentation: Create formal requirement specifications

Challenges:

e Changing requirements during development

e Communication gaps between stakeholders

e Incomplete information from users

Mnemonic: "IQOW" - Interviews, Questionnaires, Observation, Workshops

Question 2(c) [7 marks]

Discuss the responsibilities of software project manager.

Answer:

A Software Project Manager oversees the entire software development lifecycle ensuring successful

project delivery.

Responsibility Area
Planning

Team Management
Risk Management
Communication

Quality Assurance

Detailed Responsibilities:

Project Planning:

Key Tasks

Project scheduling, resource allocation
Team coordination, motivation

Risk identification, mitigation strategies
Stakeholder coordination, reporting

Process compliance, deliverable quality

No. 5/ 30

Skills Required
Strategic thinking
Leadership
Problem-solving
Communication skills

Attention to detail



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

e Work Breakdown Structure creation

e Timeline estimation and scheduling

* Resource allocation and budget management
Team Leadership:

e Team building and motivation
e Conflict resolution between team members

e Performance monitoring and feedback
Stakeholder Management:

e Client communication and expectation management
* Progress reporting to senior management

e Change request handling and approval
Risk and Quality Management:

e Risk assessment and contingency planning
e Quality standards enforcement

e Process improvement implementation
Essential Skills:

¢ Technical knowledge of software development
¢ Project management methodologies (Agile, Waterfall)
e Communication skills for diverse stakeholders

® Problem-solving and decision-making abilities

Mnemonic: "PLACE" - Planning, Leadership, Assessment, Communication, Execution

Question 2(a) OR [3 marks]

Difference between GANTT chart and PERT chart.

Answer:
Aspect GANTT Chart PERT Chart
Purpose Visual timeline of tasks Network analysis of dependencies
Format Horizontal bar chart Network diagram with nodes
Time Focus Shows duration and dates Shows critical path and slack time
Complexity Simple to understand More complex analysis
Best For Project scheduling Time optimization

No. 6 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Key Differences:
e GANTT: Shows when tasks happen

e PERT: Shows task relationships and critical path

Mnemonic: "GT vs PT" - Gantt Timeline vs PERT dependencies

Question 2(b) OR [4 marks]

Give the Full Form of: RAD, SDLC, XP model and SRS.

Answer:
Acronym Full Form Description
RAD Rapid Application Development Fast prototyping methodology
SDLC Software Development Life Cycle Complete development process
XP Extreme Programming Agile development methodology
SRS Software Requirement Specification Formal requirement document

Brief Explanations:

e RAD: Focuses on rapid prototyping and iterative development
e SDLC: Systematic approach to software development phases
o XP: Agile methodology emphasizing coding practices

e SRS: Detailed documentation of functional and non-functional requirements

Mnemonic: "RSXS" - RAD, SDLC, XP, SRS

Question 2(c) OR [7 marks]

Explain WBS in Detail.
Answer:

Work Breakdown Structure (WBS) is a hierarchical decomposition of project work into smaller,
manageable components.

No. 7 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

WBS Level Description Example

Level 1 Major project phases Analysis, Design, Implementation

Level 2 Major deliverables SRS, Design docs, Code modules

Level 3 Work packages Specific tasks and activities

Level 4 Individual activities Detailed task breakdown
Benefits of WBS:

e Clear project scope definition
e Better estimation of time and resources
* Improved task assignment and accountability

¢ Enhanced progress tracking and control
WBS Creation Process:

o |dentify major deliverables from project scope
e Decompose deliverables into smaller components
e Continue breakdown until work packages are manageable

¢ Assign responsibilities for each work package
Key Principles:

e 100% Rule: WBS includes all project work
e Mutually Exclusive: No overlap between components

e Manageable Size: Work packages should be 8-80 hours

Mnemonic: "DEBT" - Decompose, Estimate, Breakdown, Track

Question 3(a) [3 marks]

Draw the diagram of Incremental Model.
Answer:

The Incremental Model develops software in increments, with each increment adding functionality to the

previous versions.
/ Increment Design — Code — Rel

Requirements Analysis System Design Increment Design — Code — Rell Final

\ Increment Design — Code — Rell /

No. 8 /30




Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Key Features:

e Core functionality delivered first
¢ Additional features added incrementally

e Working software available early

Mnemonic: "IRA" - Incremental, Release, Add features

Question 3(b) [4 marks]

Difference between functional and non-functional requirements

Answer:
Aspect Functional Requirements
Definition What the system should do
Focus System behavior and features
Examples Login, data processing, reports
Testing Functional testing
Documentation Use cases, user stories

Detailed Comparison:
Functional Requirements:
e User authentication and authorization
e Data processing and calculations
e Report generation and export features
e Business logic implementation
Non-Functional Requirements:

e Performance: Response time, throughput
e Security: Data encryption, access control
e Usability: User interface design, accessibility

e Reliability: System availability, fault tolerance

Examples for Library System:

e Functional: Book search, issue/return books, fine calculation

Non-Functional Requirements
How the system should perform
System quality attributes
Performance, security, usability
Performance, security testing

Quality metrics, constraints

e Non-Functional: Search results in <2 seconds, 99.9% uptime, SSL encryption

Mnemonic: "FW vs NH" - Functional What vs Non-functional How

No. 9 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Question 3(c) [7 marks]

Explain DFD with example.
Answer:

Data Flow Diagram (DFD) is a graphical representation showing data flow through a system using
processes, data stores, external entities, and data flows.

DFD Symbols:
Symbol Name Purpose
Circle/Oval Process Data transformation
Rectangle External Entity Data source/destination
Open Rectangle Data Store Data storage
Arrow Data Flow Data movement direction

Example: Library Management System

Student Librarian

Book Request Issue Book Details Confirmation Book Return Receipt
Search Books Return Book
Query Book Info Issue Details Update Update Records

Book

DFD Levels:
Context Diagram (Level 0):

¢ Single process representing entire system
e External entities and major data flows

¢ High-level overview of system boundaries

No. 10/ 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Level 1 DFD:
e Major processes of the system
e Data stores and their interactions
e Detailed data flows between processes
Level 2 and beyond:
e Decomposition of complex processes
e More detailed data transformations
e Lower-level process specifications
DFD Rules:
® Process naming: Use verb + object (e.g., "Validate User")
e Data flow naming: Use noun phrases (e.g., "User Details")
e Balancing: Input/output must match between levels
e No direct connections between external entities
Benefits:
e Clear communication with stakeholders
e System boundary identification
¢ Process analysis and optimization

e Documentation for system design

Mnemonic: "PEDS" - Process, External entity, Data store, Data flow

Question 3(a) OR [3 marks]

Write classification of design activities.
Answer:

Design Activities are classified based on their scope and purpose in software development.

Classification Activities Purpose

System Design Architecture, modules, interfaces High-level structure
Detailed Design Algorithms, data structures Implementation details
Interface Design UI/UX, API specifications User interaction
Database Design Schema, relationships, optimization Data management

Key Design Activities:

No. 11/ 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

e Architectural Design: Overall system structure
e Component Design: Individual module specifications

¢ Data Design: Database and file structures

Mnemonic: "ACID" - Architectural, Component, Interface, Data design

Question 3(b) OR [4 marks]

Explain characteristics of good SRS.
Answer:

A good SRS (Software Requirement Specification) document should possess specific characteristics for
effective communication and development.

Characteristic Description Benefit

Complete All requirements included No missing functionality
Consistent No contradictory requirements Clear understanding
Unambiguous Single interpretation possible Reduced confusion
Verifiable Requirements can be tested Quality assurance
Modifiable Easy to update and maintain Adaptability

Traceable Requirements can be tracked Change management

Detailed Characteristics:
Completeness:

¢ All functional requirements specified
¢ All non-functional requirements included

e All interfaces and constraints documented
Consistency:

¢ No conflicting requirements

e Uniform terminology throughout document

e Consistent formatting and structure
Verifiability:

e Testable requirements with clear criteria

e Measurable quality attributes

e Objective success criteria defined

No. 12/ 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Mnemonic: "CCUMVT" - Complete, Consistent, Unambiguous, Modifiable, Verifiable, Traceable

Question 3(c) OR [7 marks]

Explain White box Testing.

Answer:

White Box Testing is a testing method that examines the internal structure, code, and logic of software

applications.

Aspect

Also Known As
Access Level
Focus

Tester Knowledge

Description

Structural testing, Glass box testing, Clear box testing

Full access to source code and internal structure

Code coverage, logic paths, internal data structures

Programming knowledge required

White Box Testing Techniques:

—

Statement Coverage

\ 4

White Box

Branch Coverage

Path Coverage

v

v

I —

Condition

v

Execute every

Test all decision

Test all possible paths

Test all logical

Coverage Types:

Coverage Type

Statement
Coverage

Branch Coverage

Path Coverage

Condition Coverage

Advantages:

Formula

(Executed statements / Total statements) x

100%

(Executed branches / Total branches) x 100%

(Executed paths / Total paths) x 100%

(Tested conditions / Total conditions) x 100%

e Thorough testing of code logic

No. 13 /30

Description

Tests every line of code

Tests all decision
outcomes

Tests all execution paths

Tests all logical conditions



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

e Early defect detection in development

e Code optimization opportunities identification

e Complete code coverage possible
Disadvantages:

e Expensive and time-consuming process

e Requires programming skills from testers

e May miss requirement-related defects

e Complex for large applications
Tools Used:

e Code coverage tools (JaCoCo, gcov)
e Static analysis tools (SonarQube)

¢ Unit testing frameworks (JUnit, NUnit)

Example Test Cases:

// Function to test

function calculateGrade(marks) {
if (marks >= 90) return 'A’;
else if (marks >= 80) return 'B';
else if (marks >= 70) return 'C';

else return 'F';

// White box test cases for 100% branch coverage

// Test 1: marks = 95 (A grade path)
// Test 2: marks = 85 (B grade path)
// Test 3: marks = 75 (C grade path)
// Test 4: marks = 65 (F grade path)

Mnemonic: "SBPC" - Statement, Branch, Path, Condition coverage

Question 4(a) [3 marks]

Importance of RAD model.
Answer:

RAD (Rapid Application Development) model emphasizes quick development through prototyping and
iterative design.

No. 14 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Importance Benefit Application

Fast Development Reduced time-to-market Business applications
User Involvement Better requirement understanding Interactive systems
Prototype-based Early feedback and validation Ul-intensive applications
Component Reuse Cost reduction and efficiency Enterprise applications

Key Benefits:

e Quick delivery of working prototypes

e Reduced development time and costs

¢ High user satisfaction through involvement

¢ Flexible to changes during development
When to Use RAD:

e Well-defined business requirements

e Experienced development team available

e Modular system architecture possible

Mnemonic: "FUPR" - Fast, User involvement, Prototype-based, Reusable components

Question 4(b) [4 marks]

Explain code inspection.

Answer:

Code Inspection is a systematic examination of source code to identify defects, improve quality, and

ensure compliance with standards.

Type Description Participants
Formal Inspection Structured process with defined roles 3-6 people
Walkthrough Author-led review session 2-7 people
Peer Review Informal colleague review 2-3 people
Tool-based Review Automated code analysis Individual

Code Inspection Process:

e Planning: Select code, assign roles, schedule meeting
e Overview: Author explains code purpose and design

e Preparation: Reviewers study code individually

No. 15/ 30

Duration

2-4 hours

1-2 hours

30-60 minutes

Varies



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

e Inspection Meeting: Systematic defect identification
e Rework: Author fixes identified issues
¢ Follow-up: Verify defect resolution

Benefits:

e Early defect detection before testing
e Knowledge sharing among team members
e Code quality improvement and standardization

e Reduced maintenance costs

Mnemonic: "FWPT" - Formal, Walkthrough, Peer review, Tool-based

Question 4(c) [7 marks]

Explain cohesion with its classification.
Answer:

Cohesion measures how closely related and focused the responsibilities of a single module are. Higher
cohesion indicates better module design.

Cohesion Types (Ranked from Best to Worst):

Type Description Example Strength
Functional Single, well-defined task Calculate tax amount Highest
Sequential Output of one element feeds next Read—Process—Write data High
Communicational Elements operate on same data Update customer record High
Procedural Elements follow execution sequence Initialize—Process—Cleanup Medium
Temporal Elements executed at same time System startup routines Medium
Logical Similar logical functions grouped All input/output operations Low
Coincidental No meaningful relationship Random utility functions Lowest

Detailed Classification:

Cohesion Types

/

Communicational Procedural

Functional Cohesion (Best):
e Single responsibility principle
e Example: calculateInterest() - only calculates interest

e Benefits: Easy to understand, test, and maintain

No. 16 / 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Sequential Cohesion:
e Data flows from one element to next

L4 Example: readFile() - parseData() - generateReport()

e Good design for processing pipelines
Communicational Cohesion:

e Same data structure manipulation
e Example: Module updating all fields of customer record

e Reasonable design for data-centric operations
Procedural Cohesion:

e Control flow relationship

e Example: Initialization sequence in specific order

e Acceptable for procedural operations
Temporal Cohesion:

¢ Time-based relationship

e Example: System startup or shutdown routines

* Moderate quality design
Logical Cohesion:

e Similar functions grouped together

e Example: All mathematical functions in one module

e Poor design - difficult to maintain
Coincidental Cohesion (Worst):

¢ No logical relationship between elements

e Example: Miscellaneous utility functions

e Avoid this - creates maintenance nightmares
Benefits of High Cohesion:

e Easier maintenance and debugging

e Better reusability of modules

e Improved testability and reliability

e Clearer code understanding
How to Achieve High Cohesion:

¢ Single Responsibility Principle: One reason to change

e Clear module purpose: Well-defined functionality

No. 17/ 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

e Minimal interfaces: Reduce external dependencies

e Logical grouping: Related functions together

Mnemonic: "FSCPTLC" - Functional, Sequential, Communicational, Procedural, Temporal, Logical,
Coincidental

Question 4(a) OR [3 marks]

Software doesn't wear out.
Answer:

Software doesn't wear out means software doesn't deteriorate physically like hardware components do
over time.

Aspect Hardware Software
Physical Degradation Components wear out No physical degradation
Age Effect Performance decreases Performance remains constant
Failure Pattern Increasing failure rate Constant failure rate
Maintenance Replace worn parts Fix logical errors only

Key Points:

¢ No mechanical parts to wear out

e Logical errors don't increase with time

e Performance degradation due to environment changes, not aging
e Failures occur due to design flaws, not wear

Why This Matters:

¢ Different maintenance approach needed
¢ Focus on updates rather than replacement

¢ Longevity planning differs from hardware

Mnemonic: "NLPF" - No physical parts, Logical errors, Performance constant, Failures from design

Question 4(b) OR [4 marks]

Explain use-case diagram.
Answer:

Use-case Diagram is a UML behavioral diagram showing system functionality from user's perspective
through interactions between actors and use cases.

No. 18 / 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Component Symbol Description

Actor Stick figure External entity interacting with system
Use Case Oval System function or service

System Boundary Rectangle System scope definition
Relationships Lines/Arrows Associations between components

Use-case Diagram Elements:

Student

AR

Librany Management
System

Return Book Borrow Book

Librarian

Search Books

Relationship Types:

e Association: Actor participates in use case

¢ Include: Use case always includes another use case

e Extend: Use case conditionally extends another

e Generalization: Inheritance between actors/use cases
Benefits:

e Clear system scope definition
e User requirements visualization
e Communication tool with stakeholders

e Test case derivation basis

Mnemonic: "AUSB" - Actor, Use case, System boundary, Relationships

No. 19 /30




Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Question 4(c) OR [7 marks]

Explain Black box Testing.
Answer:

Black Box Testing is a testing method that examines software functionality without knowledge of internal
code structure or implementation details.

Aspect Description

Also Known As Functional testing, Behavioral testing, Specification-based testing
Access Level No access to source code or internal structure

Focus Input-output behavior, functional requirements

Tester Knowledge Domain knowledge required, not programming

Black Box Testing Techniques:

Black Box
Equivalence Partitioning Boundary Value Analysis Decision Table State Transition Testing
Valid/Invalid input Test boundary conditions Complex business rules State-dependent
Testing Techniques:
Technique Description Example
Equivalence Divide inputs into valid/invalid
ce . Age: 0-17, 18-60, 60+
Partitioning groups
Boundary Value Test at boundaries of input
. Testat 17, 18, 60, 61
Analysis ranges
. o . Login with valid/invalid
Decision Table Test combinations of conditions
user/password
. ATM states: ldle—Card inserted—PIN
State Transition Test state changes

entry

Test Case Design Example:

No. 20 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Function: Login validation
Inputs: Username, Password
Valid equivalence classes:
- Username: 5-20 characters, alphanumeric

- Password: 8-15 characters, special chars allowed

Invalid equivalence classes:
- Username: <5 or >20 characters, special chars

- Password: <8 or >15 characters, spaces

Boundary values to test:
- Username: 4, 5, 20, 21
- Password: 7, 8, 15, 16

Advantages:

e No programming knowledge required for testers
e User perspective testing approach
¢ Independent verification of requirements
o Effective for large applications
Disadvantages:
¢ Limited code coverage visibility
e Cannot identify unused code paths
o Difficult to design test cases without specifications
¢ May miss logical errors in code
Types of Black Box Testing:
e Functional Testing: Feature verification
¢ Integration Testing: Module interaction testing

e System Testing: Complete system validation

e Acceptance Testing: User requirement verification
Tools Used:

¢ Test management tools (TestRail, Zephyr)
e Automation tools (Selenium, QTP)
o Defect tracking tools (Jira, Bugzilla)
When to Use:
e Requirements-based testing
e User acceptance testing

e System integration testing

No. 21/ 30



e Regression testing after changes

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Mnemonic: "EBDS" - Equivalence, Boundary, Decision table, State transition

Question 5(a) [3 marks]

Difference between verification and validation.

Answer:
Aspect Verification Validation
Definition "Are we building the product right?" "Are we building the right product?"
Focus Process compliance Product correctness
When During development After development
Method Reviews, inspections, walkthroughs Testing with actual data
Cost Lower cost of defect detection Higher cost of defect detection

Key Differences:

e Verification: Checks against specifications
e Validation: Checks against user needs
e Verification: Static testing methods

e Validation: Dynamic testing methods
Examples:

e Verification: Code review, design review, SRS review

e Validation: Unit testing, integration testing, system testing

Mnemonic: "VR vs VT" - Verification Reviews vs Validation Testing

Question 5(b) [4 marks]

Explain SRS.
Answer:

SRS (Software Requirement Specification) is a detailed document describing the functional and non-
functional requirements of a software system.

No. 22 / 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Component Description Purpose

Introduction System overview and scope Context setting

Functional Requirements What system should do Feature specification

Non-functional Requirements How system should perform Quality attributes

Constraints Limitations and restrictions Boundary definition
SRS Structure:

e System Purpose: Why the system is needed

e System Scope: What the system will and won't do

e Definitions: Technical terms and acronyms

e User Requirements: High-level user needs

e System Requirements: Detailed technical specifications
Importance of SRS:

e Communication tool between stakeholders

e Baseline for testing and validation

e Contract basis between client and developer

e Change management reference document
Users of SRS:

e Developers: Implementation guidance

* Testers: Test case creation

e Project Managers: Planning and tracking

e Clients: Requirement verification

Mnemonic: "IFNC" - Introduction, Functional, Non-functional, Constraints

Question 5(c) [7 marks]

Explain Risk Management.
Answer:

Risk Management is the systematic process of identifying, analyzing, and responding to project risks to
minimize their impact on project success.

Risk Management Process:

No. 23 /30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Risk

Risk

v

Risk »> Risk Assessment

Phase
Identification
Analysis
Assessment
Mitigation

Monitoring

Risk Categories:

Project Risks:

Risk

Activities

Brainstorming, checklists, expert judgment
Probability and impact assessment

Risk prioritization and ranking

Response strategy development

Track risks and mitigation effectiveness

Schedule delays due to resource unavailability

Budget overruns from scope changes

e Team turnover affecting productivity

e Communication gaps between stakeholders

Technical Risks:

e Technology complexity exceeding team skills

¢ Integration challenges with existing systems

e Performance issues under load conditions

e Security vulnerabilities in design

Business Risks:

e Changing requirements from market conditions

e Competition releasing similar products

¢ Regulatory changes affecting compliance

e Stakeholder conflicts on priorities

Risk Response Strategies:

No. 24 / 30

Output

Risk register
Risk matrix

Risk priority list
Mitigation plans

Status reports



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Strategy Description When to Use

Accept Acknowledge risk, no action Low impact risks
Avoid Eliminate risk source High impact, avoidable
Mitigate Reduce probability/impact Manageable risks
Transfer Shift risk to third party Specialized risks

Risk Assessment Matrix:

Probability/Impact Low
High Medium
Medium Low
Low Very Low

Risk Mitigation Techniques:
e Prototyping to reduce technical uncertainty
e Staff training to address skill gaps
e Regular reviews to catch issues early
e Contingency planning for critical scenarios
Benefits of Risk Management:
¢ Proactive problem prevention
e Better decision making with risk awareness
e Improved project success rates

o Stakeholder confidence in project delivery
Risk Monitoring Activities:

e Regular risk reviews and updates

e Risk trigger monitoring for early warning

e Mitigation plan progress tracking

¢ New risk identification as project evolves
Tools for Risk Management:

e Risk registers and databases

e Risk assessment matrices

e Monte Carlo simulation for quantitative analysis

e Expert judgment and historical data

No. 25/ 30

Medium
High
Medium

Low

Example

Minor Ul changes
Change technology
Additional testing

Insurance, outsourcing

High
Critical
High

Medium



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Key Success Factors:

e Management commitment to risk processes
e Team awareness and participation
e Regular communication about risks

¢ Integration with project management processes

Mnemonic: "IATMM" - Identify, Analyze, Assess, Treat, Monitor risks

Question 5(a) OR [3 marks]

List out any functional requirements for Hostel management system.
Answer:

Functional Requirements for Hostel Management System define what the system should do to manage
hostel operations effectively.

Module Functional Requirements

Student Management Register students, assign rooms, maintain profiles
Room Management Room allocation, availability tracking, maintenance

Fee Management Fee calculation, payment processing, receipt generation
Visitor Management Visitor registration, entry/exit tracking, approval

Detailed Functional Requirements:
Student Module:

e Student registration with personal details
e Room assignment based on availability

e Student profile management and updates
Administrative Module:

o Staff management and role assignment
¢ Report generation for occupancy and finances

e Complaint management and resolution tracking
Security Module:

e Access control for different user types
e Visitor logging and approval system

e Emergency contact management

Mnemonic: "SRFV" - Student, Room, Fee, Visitor management

No. 26 / 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Question 5(b) OR [4 marks]

Explain Agile process.
Answer:
Agile Process is an iterative and incremental software development approach emphasizing collaboration,

flexibility, and customer satisfaction.

Agile Principle Description Benefit

Better requirement

Customer Collaboration Continuous customer involvement )
understanding

Deliver functional software

Working Software Early value delivery

frequently
Responding to Change Adapt to changing requirements Market responsiveness
Individuals and )
People over processes and tools Better team dynamics

Interactions

Agile Values:

¢ Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation
e Responding to change over following a plan
Agile Practices:
e Short iterations (1-4 weeks)
e Daily standups for team coordination
e Sprint planning and review meetings

¢ Continuous integration and testing
Benefits:

e Faster delivery of working software
e Better quality through continuous testing
e Improved stakeholder satisfaction

¢ Flexibility to handle changes

Mnemonic: "CWRI" - Customer collaboration, Working software, Responding to change, Individuals

Question 5(c) OR [7 marks]

No. 27 / 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Explain Software Engineering - A layered approach

Answer:

Software Engineering - A Layered Approach represents software engineering as a structured
methodology with multiple interconnected layers, each building upon the foundation of lower layers.

Layered Architecture:

Layer Description Purpose Examples
Quality Foundation emphasizing Ensures customer . )
) ) ) Quality standards, metrics
Focus quality satisfaction
- Framework for software Provides structure and SDLC models, project
rocess
development control management
Methods Technical approaches and Guides development Analysis, design, testing
techniques activities methods
Automated support for . IDEs, testing tools, CASE
Tools Increases productivity

methods tools

Detailed Layer Analysis:

Quality Focus (Foundation Layer):

Bedrock of software engineering approach
Commitment to quality in all activities
Customer satisfaction as primary goal
Continuous improvement mindset

Quality characteristics: Correctness, reliability, efficiency, maintainability

Process Layer:

Defines framework for effective delivery

Establishes context for technical methods

Key elements: Communication, planning, modeling, construction, deployment
Process models: Waterfall, Agile, Spiral, Incremental

Management activities: Project planning, tracking, risk management

Methods Layer:

¢ Technical knowledge for building software

No. 28/ 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

Encompasses broad array of tasks

Communication methods: Requirement elicitation, analysis
Planning methods: Project estimation, scheduling
Modeling methods: Analysis and design techniques
Construction methods: Coding standards, testing strategies

Deployment methods: Delivery, support, feedback

Tools Layer:

Automated or semi-automated support

Increases efficiency and reduces errors

Tool categories:
o Development environments: IDEs, compilers
o Analysis and design tools: UML tools, CASE tools
o Testing tools: Unit testing, automation frameworks

o Project management tools: Scheduling, tracking software

Interactions Between Layers:

Quality < Process:

e Quality focus drives process selection

e Process ensures quality delivery

Process «— Methods:

e Process provides context for methods

e Methods implement process activities

Methods < Tools:

¢ Methods define what needs to be done

e Tools provide how to do it efficiently

Benefits of Layered Approach:

e Systematic methodology for software development

e Scalability from small to large projects

¢ Flexibility to adapt tools and methods

e Quality assurance at every level

e Risk reduction through structured approach

Implementation Strategy:

e Start with quality focus establishment

e Select appropriate process for project context

No. 29/ 30



Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

e Choose methods matching process requirements
¢ Integrate tools supporting selected methods
¢ Continuous evaluation and improvement

Key Success Factors:

e Management commitment to quality

e Team training on methods and tools

Process adherence and discipline

Tool integration and standardization

Continuous improvement culture

Real-world Application:

e Large organizations: Complete layer implementation

Small teams: Simplified but consistent approach

Project-specific: Tailored layer selection

Industry standards: Compliance with quality frameworks

Mnemonic: "QPMT" - Quality focus, Process, Methods, Tools (from bottom to top)

No. 30/ 30



	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

