Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Explain software engineering layered approach.
Answer:

Software engineering follows a layered approach with four fundamental layers working together to create
quality software products.

Table: Software Engineering Layered Approach

Layer Description Purpose
ualit Foundation layer emphasizing continuous
Q y _ Y P g Ensures defect-free products
Focus improvement
Provides systematic development
Process Defines framework of activities and tasks y P

approach

Technical procedures for analysis, design,

. . Offers "how-to" guidance
coding, testing

Methods

Tools Automated support for process and methods Provides efficiency and consistency

Quality Focus: Forms the foundation ensuring customer satisfaction

Process Layer: Defines workflow and project management activities

Methods Layer: Provides technical approach for each development phase

e Tools Layer: Supports automation and integration

Mnemonic: "Quality Processes Make Tools" - Remember the four layers from bottom to top.

Question 1(b) [4 marks]

Explain Iterative waterfall model.

Answer:

The Iterative Waterfall Model combines the structured approach of waterfall with feedback loops for
improvement and error correction.

Requirements Analysis System Design Implementation Integration & Testing Deployment Maintenance
“Feedback ™ ““Feedback ™ ““Feedback ™ “Feedback ™" ““Feedback "

Key Features:

e Sequential phases: Each phase completed before next begins
¢ Feedback loops: Allow return to previous phases for corrections

e Documentation driven: Heavy emphasis on documentation at each phase

No. 1/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Error correction: Issues identified in later phases can be fixed

Mnemonic: "Water Falls Back Up" - Sequential flow with upward feedback capability.

Question 1(c) [7 marks]

Explain Agile Model and Agile Principles.

Answer:

Agile is an iterative software development methodology emphasizing collaboration, customer feedback,
and rapid delivery of working software.

Table: Agile Values vs Traditional Approach

Agile Values Traditional Approach
Individuals and interactions Processes and tools

Working software Comprehensive documentation
Customer collaboration Contract negotiation
Responding to change Following a plan

Core Agile Principles:

Customer satisfaction: Deliver valuable software early and continuously
Welcome change: Embrace changing requirements even late in development
Frequent delivery: Deliver working software frequently (weeks rather than months)
Collaboration: Business people and developers work together daily
Motivated individuals: Build projects around motivated people

Face-to-face conversation: Most efficient method of communication
Working software: Primary measure of progress

Sustainable development: Maintain constant pace indefinitely

Technical excellence: Continuous attention to good design

Simplicity: Art of maximizing work not done

Self-organizing teams: Best requirements emerge from self-organizing teams

Regular reflection: Team reflects and adjusts behavior regularly

Diagram: Agile Development Cycle

Coding

A
A

_—> Design Testing —

A

Planning Review Release

No. 2 /27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Mnemonic: "Customer Change Frequently Collaborates" - Core agile principles focus.

Question 1(c OR) [7 marks]

Write a short note on Scrum.

Answer:

Scrum is an agile framework for managing software development with emphasis on team collaboration and

iterative progress.

Table: Scrum Roles and Responsibilities

Role

Product Owner

Scrum Master

Development
Team

Scrum Events:

Responsibilities
Defines product features and priorities

Facilitates process and removes

obstacles

Creates working software

Key Activities

Manages product backlog

Conducts ceremonies

Self-organizing and cross-

functional

e Sprint: 1-4 week iteration producing potentially shippable product

e Sprint Planning: Team plans work for upcoming sprint
e Daily Scrum: 15-minute daily synchronization meeting
e Sprint Review: Demonstrate completed work to stakeholders

e Sprint Retrospective: Team reflects on process improvements

Scrum Artifacts:

* Product Backlog: Prioritized list of features

e Sprint Backlog: Items selected for current sprint

e Increment: Working product at sprint end

Diagram: Scrum Process Flow

.

Product Backlog

Sprint Planning

Sprint

/

~__,

Sprint

Daily

Sprint Review

Mnemonic: "Product Sprints Daily Reviews" - Key scrum elements sequence.

No. 3 /27

Product Increment

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Question 2(a) [3 marks]

If you have to develop a word processing software product, what process models will you choose?
Justify your answer.

Answer:

For word processing software development, | would choose the Incremental Model as the most suitable
process model.

Justification:

e Complex functionality: Word processors have numerous features (editing, formatting, spell-check)
that can be developed incrementally

e User feedback: Early increments allow user testing and feedback incorporation

¢ Risk management: Core features delivered first, advanced features added later

e Market advantage: Basic version can be released early to gain market presence
Development Increments:

1. Increment 1: Basic text editing and file operations

2. Increment 2: Formatting and font management

3. Increment 3: Advanced features (spell-check, templates)

Mnemonic: "Word Processing Increments User Feedback" - Incremental approach suits complex software.

Question 2(b) [4 marks]

Explain characteristics of good SRS.
Answer:

A good Software Requirements Specification (SRS) document must possess specific characteristics to
ensure successful software development.

Table: Characteristics of Good SRS

Characteristic Description Importance

Contains all necessary requirements Prevents scope creep

Complete

Consistent

Unambiguous

No conflicting requirements

Clear and precise language

Avoids implementation confusion

Single interpretation possible

Verifiable Requirements can be tested Enables validation
Modifiable Easy to change and maintain Supports requirement evolution
Traceable Requirements linked to sources Impact analysis possible

No. 4 [27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Additional Characteristics:
e Feasible: Technically and economically achievable
* Necessary: Each requirement serves a purpose
e Prioritized: Requirements ranked by importance

e Testable: Specific criteria for verification

Mnemonic: "Complete Consistent Unambiguous Verifiable" - Core SRS quality attributes.

Question 2(c) [7 marks]

Explain functional and non-functional requirements for an ATM software.

Answer:

ATM software requirements are categorized into functional (what system does) and non-functional (how
system performs) requirements.

Table: ATM Functional Requirements

Function Description Example

Authentication User login and verification PIN validation, card reading
Account Operations Basic banking transactions Balance inquiry, cash withdrawal
Transaction Processing Money transfer and deposits Account-to-account transfer
Receipt Generation Transaction documentation Print transaction receipts
Session Management User session control Timeout, logout functionality

Table: ATM Non-Functional Requirements

Category Requirement Specification

Performance Response time Maximum 3 seconds per transaction
Security Data protection 256-bit encryption for all data
Reliability System availability 99.9% uptime requirement
Usability User interface Simple interface for all age groups
Scalability Load handling Support 1000 concurrent users

Functional Requirements Details:
e Cash Withdrawal: Dispense cash after successful authentication

e Balance Inquiry: Display current account balance

No. 5/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

e PIN Change: Allow users to update their PIN

e Mini Statement: Provide last 10 transactions
Non-Functional Requirements Details:

e Security: Multi-factor authentication, transaction logging
e Performance: Fast transaction processing, minimal wait time
e Availability: 24/7 operation with minimal downtime

e Maintainability: Easy software updates and hardware maintenance

Mnemonic: "Functions Work, Quality Matters" - Functional vs non-functional distinction.

Question 2(a OR) [3 marks]

Explain Incremental Model with diagram.
Answer:

The Incremental Model develops software in small, manageable portions called increments, with each
increment adding new functionality to the existing system.

Diagram: Incremental Model

/ Increment Analysis Design Code Test f

Requirements Increment Analysis Design Code Test Release

\ Increment Analysis Design Code Test Final Release

Key Features:
¢ Parallel development: Multiple increments developed simultaneously

e Early delivery: Working software available after first increment

e Risk reduction: Core functionality delivered first

Mnemonic: "Increments Build Upon Previous" - Each increment adds to existing functionality.

Question 2(b OR) [4 marks]

Differentiate between functional and non-functional requirements.
Answer:

Table: Functional vs Non-Functional Requirements

No. 6 /27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Aspect Functional Requirements Non-Functional Requirements
Definition What the system does How the system performs
Focus System behavior and features System quality attributes
Testing Black-box testing Performance and stress testing
Documentation Use cases, user stories Quality metrics, constraints
Examples Login, search, calculate Speed, security, usability
Verification Functional testing Non-functional testing

Change Impact Feature modification Performance tuning

User Visibility Directly visible to users Indirectly experienced

Functional Requirements Characteristics:
e Behavior-focused: Define system actions and responses
e Feature-specific: Each requirement describes a specific capability
e User-driven: Based on user needs and business processes
Non-Functional Requirements Characteristics:

e Quality-focused: Define performance and quality standards
e System-wide: Apply to entire system rather than specific features

e Constraint-driven: Set limits and boundaries for system operation

Mnemonic: "Functions Do, Quality Shows" - Functional requirements define actions, non-functional define
quality.

Question 2(c OR) [7 marks]

Write a short note on Requirements Analysis.
Answer:

Requirements Analysis is the process of studying user needs and defining system requirements to
understand what the software system should accomplish.

Table: Requirements Analysis Process

No. 7 /27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Phase Activities Deliverables

Elicitation Gather requirements from stakeholders Requirement lists, interviews
Analysis Study and understand requirements Requirement models, prototypes
Specification Document requirements formally SRS document, use cases
Validation Verify requirements correctness Validated requirements

Requirements Elicitation Techniques:
¢ Interviews: One-on-one discussions with stakeholders
e Questionnaires: Structured surveys for large user groups
e Observation: Studying current work processes
e Workshops: Group sessions for requirement gathering
e Prototyping: Building preliminary versions for feedback
Analysis Activities:
e Requirement prioritization: Ranking requirements by importance
e Feasibility study: Assessing technical and economic viability
e Conflict resolution: Resolving contradictory requirements
¢ Requirement modeling: Creating visual representations
Validation Techniques:
e Requirement reviews: Formal examination of documented requirements
® Prototyping: Building models to validate understanding
¢ Test case generation: Creating tests from requirements
Challenges in Requirements Analysis:
e Changing requirements: Stakeholder needs evolve over time
e Communication gaps: Misunderstanding between users and developers
¢ Incomplete requirements: Missing or vague specifications

e Conflicting stakeholder needs: Different user groups have different priorities

Mnemonic: "Every Analysis Specification Validates" - Key phases of requirements analysis.

Question 3(a) [3 marks]

Explain Gantt Chart.

Answer:

No. 8 / 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

A Gantt Chart is a visual project management tool that displays project tasks against a timeline, showing
task duration, dependencies, and progress.

Table: Gantt Chart Components

Component Description Purpose

Tasks Project activities listed vertically Shows work breakdown
Timeline Horizontal time scale Displays project duration
Bars Horizontal bars showing task duration Visual task representation
Dependencies Lines connecting related tasks Shows task relationships
Milestones Key project checkpoints Marks important events

Diagram: Sample Gantt Chart

Task Name | week 1 | Week 2 | Week 3 | Week 4 |

Requirements | T | | | |

Design | | I | I | |

Coding | | | I | I |

Testing | | | | I |
Benefits:

e Visual clarity: Easy to understand project timeline
e Progress tracking: Shows completed vs remaining work

* Resource planning: Helps allocate resources effectively

Mnemonic: "Gantt Graphs Timeline Tasks" - Visual timeline representation of project tasks.

Question 3(b) [4 marks]

Write in brief: Responsibilities and skills of software project manager.
Answer:

A software project manager oversees the entire software development lifecycle, ensuring projects are
completed on time, within budget, and meet quality standards.

Table: Project Manager Responsibilities

No. 9 /27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Category Responsibilities Key Activities

Project scope and timeline

Plannin WBS creation, schedulin
B definition 8
Resource . .)))
Team allocation and coordination Staff assignment, skill matching

Management

.) .)) Risk assessment, contingency
Risk Management Identify and mitigate project risks ,

planning

Communication Stakeholder coordination Status reporting, meetings
Quality Assurance Ensure deliverable quality Review processes, standards

Essential Skills:

e Technical skills: Understanding of software development processes
e Leadership skills: Team motivation and guidance

e Communication skills: Effective stakeholder interaction

¢ Problem-solving skills: Quick issue resolution

¢ Time management: Efficient task prioritization
Key Responsibilities:
* Project planning: Define scope, timeline, and resources
e Team coordination: Manage development team activities
e Stakeholder management: Maintain client and sponsor relationships

¢ Risk mitigation: Identify and address potential problems

Mnemonic: "Managers Plan Resources Risks Communication" - Core responsibilities of project managers.

Question 3(c) [7 marks]

Write a short note on Risk Management.
Answer:

Risk Management is the systematic process of identifying, analyzing, and responding to project risks that
could impact software development success.

Table: Risk Management Process

No. 10 / 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Phase Activities Techniques

Risk Identification Find potential risks Brainstorming, checklists
Risk Analysis Assess probability and impact Risk matrices, scoring
Risk Planning Develop response strategies Mitigation, avoidance
Risk Monitoring Track and control risks Regular reviews

Types of Software Project Risks:
Technical Risks:
e Technology uncertainty: New or unproven technologies

e Performance issues: System not meeting performance requirements

¢ Integration problems: Difficulty combining system components
Project Risks:
e Schedule delays: Tasks taking longer than estimated
e Resource constraints: Insufficient staff or budget
e Scope creep: Uncontrolled requirement changes
Business Risks:
e Market changes: Shifting business requirements
e Competition: Competitive products affecting project value
* Regulatory changes: New compliance requirements
Risk Response Strategies:
¢ Risk Avoidance: Eliminate risk by changing project approach
e Risk Mitigation: Reduce probability or impact of risk
e Risk Transfer: Shift risk to third party (insurance, outsourcing)
e Risk Acceptance: Accept risk and develop contingency plans

Risk Monitoring Techniques:

¢ Regular risk reviews: Periodic assessment of risk status
e Risk metrics: Quantitative measures of risk exposure

e Early warning indicators: Signals of emerging risks

Outcomes

Risk register
Prioritized risks
Risk response plans

Updated risk status

Mnemonic: "Identify Analyze Plan Monitor" - Four phases of risk management process.

Question 3(a OR) [3 marks]

Explain WBS with example.

No. 11/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Answer:

Work Breakdown Structure (WBS) is a hierarchical decomposition of project work into smaller, manageable
components that can be easily estimated, assigned, and tracked.

Diagram: WBS Example for E-commerce Website

E-commerce Website

Frontend Development

Backend Development

User Management

Unit Testing ‘ ‘ Integration Testing

e | s |

Payment Gateway

Database Design

‘ Order Processing

User Acceptance Testing ‘

WBS Characteristics:

e Hierarchical structure: Top-down breakdown of project scope
e 100% rule: WBS includes 100% of work defined by project scope

e Mutually exclusive: No overlap between WBS elements

Mnemonic: "Work Breaks Small" - Breaking work into smaller manageable pieces.

Question 3(b OR) [4 marks]

Explain Project monitoring and control.

Answer:

Project monitoring and control involves tracking project progress, comparing actual performance against
planned performance, and taking corrective actions when necessary.

Table: Monitoring and Control Activities

Activity Description Tools/Techniques
Progress Tracking Monitor task completion Gantt charts, dashboards
Performance Measurement Compare actual vs planned Earned value analysis
Quality Control Ensure deliverable quality Reviews, testing

Risk Monitoring Track identified risks Risk registers, reports
Change Control Manage scope changes Change request process

Key Monitoring Metrics:

Schedule performance: Tasks completed on time

Cost performance: Budget utilization and variance

Quality metrics: Defect rates, customer satisfaction

Resource utilization: Team productivity and efficiency

No. 12 [27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Control Actions:

e Corrective actions: Address performance deviations
* Preventive actions: Avoid potential problems

e Change management: Handle scope modifications

Mnemonic: "Monitor Progress Performance Quality" - Key areas of project monitoring.

Question 3(c OR) [7 marks]

Explain Critical Path Method (CPM) with a suitable example.
Answer:

Critical Path Method (CPM) is a project management technique that identifies the longest sequence of
dependent tasks and determines the minimum project completion time.

Table: Sample Project Tasks

Task Duration (Days) Predecessors
A - Requirements 5 -

B - Design 8 A

C - Database Setup 6 A

D - Frontend Coding 10 B

E - Backend Coding 12 B, C

F - Integration 4 D, E

G - Testing 6 F

Diagram: CPM Network

B8 > D:10

A5

/‘F
N o 12

Critical Path Calculation:

No. 13/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

e Path1:A—->B—>D—>F—->G=5+8+10+4+6=33days

e Path22A—-B—>E—->F—>G=5+8+12+4+6=35days (Critical Path)

e Path3:A>C—>E—>F—->G=5+6+12+4+6=33days
CPM Benefits:

e Project duration: Determines minimum completion time

e Critical activities: Identifies tasks that cannot be delayed

¢ Float calculation: Shows available slack time for non-critical tasks

e Resource optimization: Helps allocate resources efficiently

CPM Steps:

N

. Activity identification: List all project activities
. Dependency mapping: Determine task relationships
. Duration estimation: Estimate time for each activity

2
3
4. Network construction: Create project network diagram
5

. Critical path calculation: Find longest path through network

Float Types:

¢ Total Float: Maximum delay without affecting project completion

¢ Free Float: Delay without affecting successor activities

¢ Independent Float: Delay without affecting predecessors or successors

Mnemonic: "Critical Paths Minimize Project Duration" - CPM finds longest path determining minimum time.

Question 4(a) [3 marks]

Write a note on classification of design activities.

Answer:

Software design activities are systematically classified to organize the design process and ensure

comprehensive system development.

Table: Classification of Design Activities

Classification Activities

Architectural Design System structure, components
Interface Design User interface, system interfaces
Component Design Module details, algorithms

Data Design Database, data structures

No. 14 [27

Focus Area

High-level organization
Interaction design
Low-level implementation

Data organization

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Design Activity Levels:
e System Level: Overall system architecture and major components
e Subsystem Level: Individual subsystem design and interfaces

e Component Level: Detailed module design and algorithms
Design Approaches:

¢ Top-down design: Start with high-level and decompose

e Bottom-up design: Build from individual components upward

Mnemonic: "Architects Interface Components Data" - Four main design activity classifications.

Question 4(b) [4 marks]

Define Coupling. Explain its classification.
Answer:

Coupling refers to the degree of interdependence between software modules. Lower coupling indicates
better software design with more maintainable and flexible code.

Table: Types of Coupling (Loosest to Tightest)

Coupling Type Description Example
] Modules communicate through Function calls with simple
Data Coupling
parameters parameters
. Modules share composite data Passing record/structure as
Stamp Coupling
structure parameter
Control One module controls another's)
)) Passing control flags
Coupling execution
External
] Modules depend on external format Shared file format or protocol
Coupling
Common)
) Modules share global data Global variables access
Coupling
Content . Direct access to another module's
. One module modifies another's data
Coupling data

Coupling Characteristics:

e Data coupling: Best type - minimal interdependence
e Stamp coupling: Acceptable - shared data structures

e Control coupling: Moderate - control information passed

No. 15/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

e Content coupling: Worst type - high interdependence
Benefits of Loose Coupling:

e Maintainability: Easier to modify individual modules
e Reusability: Modules can be used in different contexts

e Testability: Modules can be tested independently

Mnemonic: "Data Stamp Control External Common Content" - Coupling types from loose to tight.

Question 4(c) [7 marks]

Draw a use case diagram for online shopping web application.
Answer:

A use case diagram shows the functional requirements of an online shopping system by illustrating actors
and their interactions with the system.

Diagram: Online Shopping Use Case Diagram

[Payment system |

o /

Key Use Cases Explained:
Customer Use Cases:

e Browse Products: View available products by category

Search Products: Find specific products using keywords

Shopping Cart: Add, remove, and modify cart items

Checkout Process: Complete purchase with shipping details
e Payment Processing: Handle secure payment transactions
e Order Management: Track orders and view purchase history
Admin Use Cases:
e Product Management: Add, edit, delete products and categories
e Order Processing: Manage order fulfillment and shipping
¢ User Management: Handle customer accounts and permissions

e Reporting: Generate sales and inventory reports

System Relationships:

No. 16 / 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

¢ Include: Mandatory sub-use cases (checkout includes payment)
e Extend: Optional extensions (inventory update extends product management)
¢ Inheritance: Specialized actor behaviors

Actors:

e Primary Actors: Customer, Admin (initiate use cases)

e Secondary Actors: Payment System (respond to system requests)

Mnemonic: "Customers Browse Buy, Admins Manage Monitor" - Core use case categories.

Question 4(a OR) [3 marks]

Explain the characteristics of good Ul.
Answer:

Good User Interface (Ul) design ensures effective user interaction with software systems through intuitive
and user-friendly design principles.

Table: Characteristics of Good Ul

Characteristic Description Example

Consistency Uniform design across application Same button styles throughout
Simplicity Easy to understand and use Minimal, clean interface

Visibility Important elements clearly visible Key actions prominently displayed
Feedback System responds to user actions Progress bars, confirmations
Error Prevention Prevents user mistakes Input validation, confirmations
Flexibility Accommodates different user needs Customizable interfaces

Ul Design Principles:
e User-centered: Design focused on user needs and goals

® Accessibility: Usable by people with different abilities

e Efficiency: Minimizes steps to complete tasks

Mnemonic: "Consistent Simple Visible Feedback" - Core Ul design characteristics.

Question 4(b OR) [4 marks]

Define Cohesion. Explain its classification.

Answer:

No. 17 [27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Cohesion refers to how closely related and focused the responsibilities of a single module are. High
cohesion indicates well-designed modules with related functionality.

Table: Types of Cohesion (Weakest to Strongest)

Cohesion Type Description Example

Utility module with unrelated

Coincidental Elements grouped arbitrarily functions
uncti

Elements perform similar logical

Logical functions All input/output operations
Temporal Elements executed at same time System initialization module
Procedural Elements follow specific sequence Sequential processing steps
Communicational Elements operate on same data Module processing same record
Sequential Output of one element is input to next Data transformation pipeline
Functional All elements contribute to single task Calculate employee salary

Cohesion Characteristics:

¢ Functional cohesion: Best type - single, well-defined purpose

e Sequential cohesion: Good - data flows through module

e Communicational cohesion: Acceptable - operates on same data

e Coincidental cohesion: Worst type - no logical relationship
Benefits of High Cohesion:

¢ Maintainability: Easier to understand and modify

¢ Reliability: Less likely to have errors

¢ Reusability: Single-purpose modules more reusable

Mnemonic: "Coincidental Logical Temporal Procedural Communicational Sequential Functional" - Cohesion
types from weak to strong.

Question 4(c OR) [7 marks]

Draw context diagram for library system.
Answer:

A context diagram shows the library system as a single process with its external entities and data flows,
providing a high-level view of system boundaries.

Diagram: Library System Context Diagram

No. 18 [27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

SN

Library Management

(N~

External Entities:
Student (Library Member):

e Inputs: Book search requests, reservation requests, return notifications

e Outputs: Book availability information, due dates, fine details
Librarian:

e |Inputs: Book issue/return transactions, member verification

e Outputs: Book status updates, member information, transaction confirmations
Administrator:

¢ Inputs: New book additions, member management, system configuration

e Outputs: System reports, statistics, overdue notifications
Publisher/Supplier:

¢ Inputs: Book catalogs, availability updates

e Outputs: Purchase orders, procurement requests

Data Flows:

Book Information: Details about books, availability, location

Member Data: Student/faculty information, borrowing history

Transaction Records: Issue/return details, fine calculations

Reports: Usage statistics, overdue lists, inventory reports

System Boundary:

The context diagram clearly defines what is inside the library system (book management, member
management, transaction processing) and what is outside (external entities like students, staff, and
suppliers).

Key Data Stores (Internal to System):

® Book catalog database

e Member information database

No. 19/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

e Transaction history database

e Fine and payment records

Mnemonic: "Students Librarians Admins Publishers" - Four main external entities interacting with library
system.

Question 5(a) [3 marks]

Differentiate verification and validation.
Answer:

Verification and validation are two complementary quality assurance processes that ensure software meets
requirements and user needs.

Table: Verification vs Validation

Aspect Verification Validation

Question Are we building the product right? Are we building the right product?
Focus Process and standards compliance Product meets user needs

When Throughout development After product completion
Methods Reviews, inspections, walkthroughs Testing, user acceptance

Cost Lower cost of defect detection Higher cost but essential
Objective Ensure conformance to specifications Ensure fitness for use

Verification Activities:

e Code reviews: Checking code against coding standards
¢ Design reviews: Ensuring design meets requirements

¢ Document reviews: Verifying documentation completeness
Validation Activities:

e System testing: Testing complete integrated system
e User acceptance testing: End-user validation of functionality

e Performance testing: Validating system performance requirements

Mnemonic: "Verification Verifies Process, Validation Validates Product" - Key distinction between the two.

Question 5(b) [4 marks]

Explain Code Review.

No. 20/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Answer:

Code Review is a systematic examination of source code by developers other than the author to identify
defects, improve code quality, and ensure adherence to coding standards.

Table: Types of Code Review

Type Description Participants Formality

Author explains code to

Code Walkthrough) Author + 2-3 reviewers Informal
reviewers
.) o Moderator, author,
Code Inspection Formal systematic examination . Formal
reviewers
i ; Semi-
Peer Review Colleague reviews code changes 1-2 peer developers
formal
Tool-Assisted) .)
Automated tools assist review Author + automated tools Variable

Review

Code Review Process:

1. Preparation: Author prepares code and documentation
2. Review Meeting: Team examines code systematically

3. Defect Logging: Issues and improvements documented
4. Follow-up: Author addresses identified issues
5

. Re-review: Verification of fixes if necessary

Review Criteria:

Functionality: Code performs intended operations correctly

Standards Compliance: Follows coding conventions and guidelines

Maintainability: Code is readable and well-documented

Performance: Efficient algorithms and resource usage
Benefits:

e Defect Detection: Early identification of bugs and issues
e Knowledge Sharing: Team learns from each other's code

* Quality Improvement: Consistent coding standards across team

Mnemonic: "Reviews Reveal Errors Early" - Code reviews catch defects before testing.

Question 5(c) [7 marks]

Write a short note on White Box Testing.

Answer:

No. 21/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

White Box Testing is a software testing technique that examines the internal structure, design, and coding
of an application to verify input-output flow and improve design and usability.

Table: White Box Testing Techniques

Technique Description Coverage Criteria

Statement Coverage Execute every statement All statements executed at least once
Branch Coverage Test all decision points All branches (true/false) covered
Path Coverage Test all possible paths All independent paths executed
Condition Coverage Test all conditions All boolean conditions tested

White Box Testing Process:

Code Test

v

A 4

Test Case

A 4

v

Coverage Report Generation

Coverage Types Explained:

Statement Coverage:
e Ensures every line of code is executed at least once
e Formula: (Statements Executed / Total Statements) x 100
e Minimum level of testing required

Branch Coverage:

e Tests all decision points (if-else, switch-case)
e Ensures both true and false conditions are tested

e More thorough than statement coverage
Path Coverage:

e Tests all possible execution paths through code
e Most comprehensive but often impractical for complex programs

e Uses cyclomatic complexity to determine paths
Condition Coverage:

e Tests all boolean sub-expressions individually
e Ensures each condition evaluates to both true and false

e Important for complex conditional statements
White Box Testing Tools:
e Static Analysis Tools: Examine code without execution

e Dynamic Analysis Tools: Monitor code during execution

No. 22 / 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

e Coverage Tools: Measure test coverage percentage

e Profiling Tools: Analyze performance characteristics
Advantages:

e Thorough Testing: Examines all code paths and logic

e Early Defect Detection: Finds errors during development

e Optimization: Identifies unused code and inefficiencies

e Security Testing: Reveals potential security vulnerabilities
Disadvantages:

e Time Consuming: Requires detailed code knowledge
¢ Expensive: Needs skilled testers familiar with code
e Limited Scope: May miss integration and system-level issues

e Maintenance: Test cases need updates with code changes
White Box vs Black Box:

e White Box: Internal structure focus, code-based testing
e Black Box: Functional behavior focus, specification-based testing

e Complementary: Both approaches needed for comprehensive testing

Test Case Design Guidelines:

e Boundary Testing: Test edge cases and limits
e Loop Testing: Verify loop conditions and iterations
e Data Flow Testing: Follow variable definitions and usage

e Control Flow Testing: Test decision logic and branches

Mnemonic: "White Box Sees Inside Structure" - Internal code structure testing approach.

Question 5(a OR) [3 marks]

List out various coding standards and guidelines.
Answer:

Coding standards and guidelines ensure consistent, readable, and maintainable code across development
teams and projects.

Table: Coding Standards Categories

No. 23/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Category Standards

Naming Conventions Variable, function, class naming
Code Structure Indentation, spacing, brackets
Documentation Comments, function headers
Error Handling Exception handling, logging

Common Coding Guidelines:
e Meaningful names: Use descriptive variable and function names
e Consistent indentation: Use consistent spacing (2 or 4 spaces)
e Comment code: Explain complex logic and business rules
¢ Function size: Keep functions small and focused
e Error handling: Implement proper exception handling

Language-Specific Standards:

e Java: Oracle Java Code Conventions
e Python: PEP 8 Style Guide
e JavaScript: Airbnb JavaScript Style Guide

e C++: Google C++ Style Guide

Examples

camelCase, PascalCase
4-space indentation

Inline comments, APl docs

Try-catch blocks

Mnemonic: "Names Structure Documentation Errors" - Four main coding standard categories.

Question 5(b OR) [4 marks]

Explain Test cases and Test suite with example.

Answer:

Test cases are specific conditions under which a tester determines whether a software application is

working correctly, while a test suite is a collection of related test cases.

Table: Test Case vs Test Suite

Aspect Test Case

Definition Single test scenario
Scope Specific functionality
Execution Individual test
Management Single test management

Test Case Components:

No. 24 [27

Test Suite

Collection of test cases
Related functionalities
Group execution

Batch management

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

e Test Case ID: Unique identifier (TC_001)
e Test Description: What is being tested
® Preconditions: Setup requirements

e Test Steps: Step-by-step procedure

e Expected Result: Expected outcome

e Actual Result: Observed outcome

e Status: Pass/Fail/Blocked

Example Test Case:

Test Case ID: TC_LOGIN 001

Description: Verify user login with valid credentials
Preconditions: User account exists in system
Test Steps:

1. Navigate to login page

2. Enter valid username

3. Enter valid password

4. Click Login button

Expected Result: User redirected to dashboard
Actual Result: [To be filled during execution]
Status: [Pass/Fail]

Test Suite Example:

e Login Test Suite: Contains all login-related test cases
o TC_LOGIN_001: Valid login
o TC_LOGIN_002: Invalid username
o TC_LOGIN_003: Invalid password
o TC_LOGIN_004: Empty fields

Mnemonic: "Cases Test Functions, Suites Group Cases" - Individual vs collection relationship.

Question 5(c OR) [7 marks]

Write a short note on Black Box Testing.

Answer:

Black Box Testing is a software testing method that examines functionality without knowledge of internal
code structure, focusing on input-output behavior and requirement compliance.

Table: Black Box Testing Techniques

No. 25/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

Technique Description Application

Equivalence Partitioning Divide inputs into equivalent groups Input validation testing
Boundary Value Analysis Test edge values and boundaries Range and limit testing
Decision Table Testing Test combinations of conditions Complex business logic
State Transition Testing Test state changes Workflow and status testing
Use Case Testing Test user scenarios End-to-end functionality

Black Box Testing Process:

Requirement Analysis Test Case Test Data Preparation Test Result

Testing Techniques Explained:

Equivalence Partitioning:

Divides input domain into classes of equivalent data

One test case from each partition represents entire class

Reduces number of test cases while maintaining coverage

Example: Age input (0-17: Minor, 18-65: Adult, 65+: Senior)
Boundary Value Analysis:

e Tests values at boundaries of equivalence partitions

e Focuses on edge cases where errors commonly occur

e Tests minimum, maximum, and just inside/outside boundaries

e Example: For range 1-100, test: 0, 1, 2, 99, 100, 101
Decision Table Testing:

e Represents complex business rules in tabular format

e Shows all possible combinations of conditions and actions

e Ensures complete coverage of business logic scenarios

e Useful for systems with multiple interacting conditions
State Transition Testing:

* Models system behavior as states and transitions
e Tests valid and invalid state changes
e Verifies system handles state transitions correctly

e Example: Order states (Pending — Processing — Shipped — Delivered)

Use Case Testing:

No. 26 [/ 27

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

e Based on user scenarios and use cases
e Tests complete business workflows end-to-end
® Focuses on user perspective and real-world usage

e Validates system meets user requirements

Black Box Testing Levels:
e Unit Testing: Individual component functionality
e Integration Testing: Component interaction testing
e System Testing: Complete system functionality

e Acceptance Testing: User requirement validation

Advantages:
e User Perspective: Tests from end-user viewpoint
e No Code Knowledge: Testers don't need programming skills
® Unbiased Testing: Not influenced by code implementation

e Early Testing: Can start with requirements specification
Disadvantages:

¢ Limited Coverage: May miss internal logic errors

¢ Inefficient: Difficult to identify all possible inputs

e Redundant Testing: May duplicate test scenarios

¢ Blind Testing: Cannot target specific code areas
Test Data Design:

e Valid Inputs: Test normal operational conditions
¢ Invalid Inputs: Test error handling capabilities
e Edge Cases: Test boundary conditions and limits

e Stress Inputs: Test system under extreme conditions
Black Box vs White Box Comparison:

¢ Black Box: External behavior, specification-based
¢ White Box: Internal structure, code-based
e Gray Box: Combination of both approaches

e Complementary: Both needed for thorough testing

Mnemonic: "Black Box Behavior Based" - Focus on external functionality without internal knowledge.

No. 27 [27

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

