
Layer Description Purpose

Quality
Focus

Foundation layer emphasizing continuous
improvement

Ensures defect-free products

Process Defines framework of activities and tasks
Provides systematic development
approach

Methods
Technical procedures for analysis, design,
coding, testing

Offers "how-to" guidance

Tools Automated support for process and methods Provides efficiency and consistency

Feedback Feedback Feedback Feedback Feedback
Requirements Analysis System Design Implementation Integration & Testing Deployment Maintenance

Question 1(a) [3 marks]
Explain software engineering layered approach.

Answer:

Software engineering follows a layered approach with four fundamental layers working together to create
quality software products.

Table: Software Engineering Layered Approach

Quality Focus: Forms the foundation ensuring customer satisfaction

Process Layer: Defines workflow and project management activities

Methods Layer: Provides technical approach for each development phase

Tools Layer: Supports automation and integration

Mnemonic: "Quality Processes Make Tools" - Remember the four layers from bottom to top.

Question 1(b) [4 marks]
Explain Iterative waterfall model.

Answer:

The Iterative Waterfall Model combines the structured approach of waterfall with feedback loops for
improvement and error correction.

Key Features:

Sequential phases: Each phase completed before next begins

Feedback loops: Allow return to previous phases for corrections

Documentation driven: Heavy emphasis on documentation at each phase

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 1 / 27

Agile Values Traditional Approach

Individuals and interactions Processes and tools

Working software Comprehensive documentation

Customer collaboration Contract negotiation

Responding to change Following a plan

Planning

Design Coding Testing

Review Release

Error correction: Issues identified in later phases can be fixed

Mnemonic: "Water Falls Back Up" - Sequential flow with upward feedback capability.

Question 1(c) [7 marks]
Explain Agile Model and Agile Principles.

Answer:

Agile is an iterative software development methodology emphasizing collaboration, customer feedback,
and rapid delivery of working software.

Table: Agile Values vs Traditional Approach

Core Agile Principles:

Customer satisfaction: Deliver valuable software early and continuously

Welcome change: Embrace changing requirements even late in development

Frequent delivery: Deliver working software frequently (weeks rather than months)

Collaboration: Business people and developers work together daily

Motivated individuals: Build projects around motivated people

Face-to-face conversation: Most efficient method of communication

Working software: Primary measure of progress

Sustainable development: Maintain constant pace indefinitely

Technical excellence: Continuous attention to good design

Simplicity: Art of maximizing work not done

Self-organizing teams: Best requirements emerge from self-organizing teams

Regular reflection: Team reflects and adjusts behavior regularly

Diagram: Agile Development Cycle

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 2 / 27

Role Responsibilities Key Activities

Product Owner Defines product features and priorities Manages product backlog

Scrum Master
Facilitates process and removes
obstacles

Conducts ceremonies

Development
Team

Creates working software
Self-organizing and cross-
functional

Product Backlog Sprint Planning

Sprint
Backlog

Daily
Scrum

Sprint Review

Sprint
Retrospective

Product Increment

Mnemonic: "Customer Change Frequently Collaborates" - Core agile principles focus.

Question 1(c OR) [7 marks]
Write a short note on Scrum.

Answer:

Scrum is an agile framework for managing software development with emphasis on team collaboration and
iterative progress.

Table: Scrum Roles and Responsibilities

Scrum Events:

Sprint: 1-4 week iteration producing potentially shippable product

Sprint Planning: Team plans work for upcoming sprint

Daily Scrum: 15-minute daily synchronization meeting

Sprint Review: Demonstrate completed work to stakeholders

Sprint Retrospective: Team reflects on process improvements

Scrum Artifacts:

Product Backlog: Prioritized list of features

Sprint Backlog: Items selected for current sprint

Increment: Working product at sprint end

Diagram: Scrum Process Flow

Mnemonic: "Product Sprints Daily Reviews" - Key scrum elements sequence.

Question 2(a) [3 marks]

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 3 / 27

Characteristic Description Importance

Complete Contains all necessary requirements Prevents scope creep

Consistent No conflicting requirements Avoids implementation confusion

Unambiguous Clear and precise language Single interpretation possible

Verifiable Requirements can be tested Enables validation

Modifiable Easy to change and maintain Supports requirement evolution

Traceable Requirements linked to sources Impact analysis possible

Question 2(a) [3 marks]
If you have to develop a word processing software product, what process models will you choose?
Justify your answer.

Answer:

For word processing software development, I would choose the Incremental Model as the most suitable
process model.

Justification:

Complex functionality: Word processors have numerous features (editing, formatting, spell-check)
that can be developed incrementally

User feedback: Early increments allow user testing and feedback incorporation

Risk management: Core features delivered first, advanced features added later

Market advantage: Basic version can be released early to gain market presence

Development Increments:

1. Increment 1: Basic text editing and file operations

2. Increment 2: Formatting and font management

3. Increment 3: Advanced features (spell-check, templates)

Mnemonic: "Word Processing Increments User Feedback" - Incremental approach suits complex software.

Question 2(b) [4 marks]
Explain characteristics of good SRS.

Answer:

A good Software Requirements Specification (SRS) document must possess specific characteristics to
ensure successful software development.

Table: Characteristics of Good SRS

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 4 / 27

Function Description Example

Authentication User login and verification PIN validation, card reading

Account Operations Basic banking transactions Balance inquiry, cash withdrawal

Transaction Processing Money transfer and deposits Account-to-account transfer

Receipt Generation Transaction documentation Print transaction receipts

Session Management User session control Timeout, logout functionality

Category Requirement Specification

Performance Response time Maximum 3 seconds per transaction

Security Data protection 256-bit encryption for all data

Reliability System availability 99.9% uptime requirement

Usability User interface Simple interface for all age groups

Scalability Load handling Support 1000 concurrent users

Additional Characteristics:

Feasible: Technically and economically achievable

Necessary: Each requirement serves a purpose

Prioritized: Requirements ranked by importance

Testable: Specific criteria for verification

Mnemonic: "Complete Consistent Unambiguous Verifiable" - Core SRS quality attributes.

Question 2(c) [7 marks]
Explain functional and non-functional requirements for an ATM software.

Answer:

ATM software requirements are categorized into functional (what system does) and non-functional (how
system performs) requirements.

Table: ATM Functional Requirements

Table: ATM Non-Functional Requirements

Functional Requirements Details:

Cash Withdrawal: Dispense cash after successful authentication

Balance Inquiry: Display current account balance

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 5 / 27

Requirements

Increment
1

Increment
2

Increment
3

Analysis Design Code Test Release
1

Analysis Design Code Test Release
2

Analysis Design Code Test Final Release

PIN Change: Allow users to update their PIN

Mini Statement: Provide last 10 transactions

Non-Functional Requirements Details:

Security: Multi-factor authentication, transaction logging

Performance: Fast transaction processing, minimal wait time

Availability: 24/7 operation with minimal downtime

Maintainability: Easy software updates and hardware maintenance

Mnemonic: "Functions Work, Quality Matters" - Functional vs non-functional distinction.

Question 2(a OR) [3 marks]
Explain Incremental Model with diagram.

Answer:

The Incremental Model develops software in small, manageable portions called increments, with each
increment adding new functionality to the existing system.

Diagram: Incremental Model

Key Features:

Parallel development: Multiple increments developed simultaneously

Early delivery: Working software available after first increment

Risk reduction: Core functionality delivered first

Mnemonic: "Increments Build Upon Previous" - Each increment adds to existing functionality.

Question 2(b OR) [4 marks]
Differentiate between functional and non-functional requirements.

Answer:

Table: Functional vs Non-Functional Requirements

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 6 / 27

Aspect Functional Requirements Non-Functional Requirements

Definition What the system does How the system performs

Focus System behavior and features System quality attributes

Testing Black-box testing Performance and stress testing

Documentation Use cases, user stories Quality metrics, constraints

Examples Login, search, calculate Speed, security, usability

Verification Functional testing Non-functional testing

Change Impact Feature modification Performance tuning

User Visibility Directly visible to users Indirectly experienced

Functional Requirements Characteristics:

Behavior-focused: Define system actions and responses

Feature-specific: Each requirement describes a specific capability

User-driven: Based on user needs and business processes

Non-Functional Requirements Characteristics:

Quality-focused: Define performance and quality standards

System-wide: Apply to entire system rather than specific features

Constraint-driven: Set limits and boundaries for system operation

Mnemonic: "Functions Do, Quality Shows" - Functional requirements define actions, non-functional define
quality.

Question 2(c OR) [7 marks]
Write a short note on Requirements Analysis.

Answer:

Requirements Analysis is the process of studying user needs and defining system requirements to
understand what the software system should accomplish.

Table: Requirements Analysis Process

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 7 / 27

Phase Activities Deliverables

Elicitation Gather requirements from stakeholders Requirement lists, interviews

Analysis Study and understand requirements Requirement models, prototypes

Specification Document requirements formally SRS document, use cases

Validation Verify requirements correctness Validated requirements

Requirements Elicitation Techniques:

Interviews: One-on-one discussions with stakeholders

Questionnaires: Structured surveys for large user groups

Observation: Studying current work processes

Workshops: Group sessions for requirement gathering

Prototyping: Building preliminary versions for feedback

Analysis Activities:

Requirement prioritization: Ranking requirements by importance

Feasibility study: Assessing technical and economic viability

Conflict resolution: Resolving contradictory requirements

Requirement modeling: Creating visual representations

Validation Techniques:

Requirement reviews: Formal examination of documented requirements

Prototyping: Building models to validate understanding

Test case generation: Creating tests from requirements

Challenges in Requirements Analysis:

Changing requirements: Stakeholder needs evolve over time

Communication gaps: Misunderstanding between users and developers

Incomplete requirements: Missing or vague specifications

Conflicting stakeholder needs: Different user groups have different priorities

Mnemonic: "Every Analysis Specification Validates" - Key phases of requirements analysis.

Question 3(a) [3 marks]
Explain Gantt Chart.

Answer:

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 8 / 27

Component Description Purpose

Tasks Project activities listed vertically Shows work breakdown

Timeline Horizontal time scale Displays project duration

Bars Horizontal bars showing task duration Visual task representation

Dependencies Lines connecting related tasks Shows task relationships

Milestones Key project checkpoints Marks important events

A Gantt Chart is a visual project management tool that displays project tasks against a timeline, showing
task duration, dependencies, and progress.

Table: Gantt Chart Components

Diagram: Sample Gantt Chart

Benefits:

Visual clarity: Easy to understand project timeline

Progress tracking: Shows completed vs remaining work

Resource planning: Helps allocate resources effectively

Mnemonic: "Gantt Graphs Timeline Tasks" - Visual timeline representation of project tasks.

Question 3(b) [4 marks]
Write in brief: Responsibilities and skills of software project manager.

Answer:

A software project manager oversees the entire software development lifecycle, ensuring projects are
completed on time, within budget, and meet quality standards.

Table: Project Manager Responsibilities

Task Name | Week 1 | Week 2 | Week 3 | Week 4 |
Requirements |████████| | | |
Design | |████████|████████| |
Coding | | |████████|████████|
Testing | | | |████████|

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 9 / 27

Category Responsibilities Key Activities

Planning
Project scope and timeline
definition

WBS creation, scheduling

Resource
Management

Team allocation and coordination Staff assignment, skill matching

Risk Management Identify and mitigate project risks
Risk assessment, contingency
planning

Communication Stakeholder coordination Status reporting, meetings

Quality Assurance Ensure deliverable quality Review processes, standards

Essential Skills:

Technical skills: Understanding of software development processes

Leadership skills: Team motivation and guidance

Communication skills: Effective stakeholder interaction

Problem-solving skills: Quick issue resolution

Time management: Efficient task prioritization

Key Responsibilities:

Project planning: Define scope, timeline, and resources

Team coordination: Manage development team activities

Stakeholder management: Maintain client and sponsor relationships

Risk mitigation: Identify and address potential problems

Mnemonic: "Managers Plan Resources Risks Communication" - Core responsibilities of project managers.

Question 3(c) [7 marks]
Write a short note on Risk Management.

Answer:

Risk Management is the systematic process of identifying, analyzing, and responding to project risks that
could impact software development success.

Table: Risk Management Process

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 10 / 27

Phase Activities Techniques Outcomes

Risk Identification Find potential risks Brainstorming, checklists Risk register

Risk Analysis Assess probability and impact Risk matrices, scoring Prioritized risks

Risk Planning Develop response strategies Mitigation, avoidance Risk response plans

Risk Monitoring Track and control risks Regular reviews Updated risk status

Types of Software Project Risks:

Technical Risks:

Technology uncertainty: New or unproven technologies

Performance issues: System not meeting performance requirements

Integration problems: Difficulty combining system components

Project Risks:

Schedule delays: Tasks taking longer than estimated

Resource constraints: Insufficient staff or budget

Scope creep: Uncontrolled requirement changes

Business Risks:

Market changes: Shifting business requirements

Competition: Competitive products affecting project value

Regulatory changes: New compliance requirements

Risk Response Strategies:

Risk Avoidance: Eliminate risk by changing project approach

Risk Mitigation: Reduce probability or impact of risk

Risk Transfer: Shift risk to third party (insurance, outsourcing)

Risk Acceptance: Accept risk and develop contingency plans

Risk Monitoring Techniques:

Regular risk reviews: Periodic assessment of risk status

Risk metrics: Quantitative measures of risk exposure

Early warning indicators: Signals of emerging risks

Mnemonic: "Identify Analyze Plan Monitor" - Four phases of risk management process.

Question 3(a OR) [3 marks]
Explain WBS with example.

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 11 / 27

E-commerce Website

Frontend Development Backend Development Testing Deployment

User
Interface

Shopping
Cart

Payment Gateway Database Design User Management Order Processing Unit Testing Integration Testing User Acceptance Testing

Activity Description Tools/Techniques

Progress Tracking Monitor task completion Gantt charts, dashboards

Performance Measurement Compare actual vs planned Earned value analysis

Quality Control Ensure deliverable quality Reviews, testing

Risk Monitoring Track identified risks Risk registers, reports

Change Control Manage scope changes Change request process

Answer:

Work Breakdown Structure (WBS) is a hierarchical decomposition of project work into smaller, manageable
components that can be easily estimated, assigned, and tracked.

Diagram: WBS Example for E-commerce Website

WBS Characteristics:

Hierarchical structure: Top-down breakdown of project scope

100% rule: WBS includes 100% of work defined by project scope

Mutually exclusive: No overlap between WBS elements

Mnemonic: "Work Breaks Small" - Breaking work into smaller manageable pieces.

Question 3(b OR) [4 marks]
Explain Project monitoring and control.

Answer:

Project monitoring and control involves tracking project progress, comparing actual performance against
planned performance, and taking corrective actions when necessary.

Table: Monitoring and Control Activities

Key Monitoring Metrics:

Schedule performance: Tasks completed on time

Cost performance: Budget utilization and variance

Quality metrics: Defect rates, customer satisfaction

Resource utilization: Team productivity and efficiency

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 12 / 27

Task Duration (Days) Predecessors

A - Requirements 5 -

B - Design 8 A

C - Database Setup 6 A

D - Frontend Coding 10 B

E - Backend Coding 12 B, C

F - Integration 4 D, E

G - Testing 6 F

A:5

B:8

C:6

D:10

E:12

F:4 G:6

Control Actions:

Corrective actions: Address performance deviations

Preventive actions: Avoid potential problems

Change management: Handle scope modifications

Mnemonic: "Monitor Progress Performance Quality" - Key areas of project monitoring.

Question 3(c OR) [7 marks]
Explain Critical Path Method (CPM) with a suitable example.

Answer:

Critical Path Method (CPM) is a project management technique that identifies the longest sequence of
dependent tasks and determines the minimum project completion time.

Table: Sample Project Tasks

Diagram: CPM Network

Critical Path Calculation:

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 13 / 27

Classification Activities Focus Area

Architectural Design System structure, components High-level organization

Interface Design User interface, system interfaces Interaction design

Component Design Module details, algorithms Low-level implementation

Data Design Database, data structures Data organization

Path 1: A → B → D → F → G = 5 + 8 + 10 + 4 + 6 = 33 days

Path 2: A → B → E → F → G = 5 + 8 + 12 + 4 + 6 = 35 days (Critical Path)

Path 3: A → C → E → F → G = 5 + 6 + 12 + 4 + 6 = 33 days

CPM Benefits:

Project duration: Determines minimum completion time

Critical activities: Identifies tasks that cannot be delayed

Float calculation: Shows available slack time for non-critical tasks

Resource optimization: Helps allocate resources efficiently

CPM Steps:

1. Activity identification: List all project activities

2. Dependency mapping: Determine task relationships

3. Duration estimation: Estimate time for each activity

4. Network construction: Create project network diagram

5. Critical path calculation: Find longest path through network

Float Types:

Total Float: Maximum delay without affecting project completion

Free Float: Delay without affecting successor activities

Independent Float: Delay without affecting predecessors or successors

Mnemonic: "Critical Paths Minimize Project Duration" - CPM finds longest path determining minimum time.

Question 4(a) [3 marks]
Write a note on classification of design activities.

Answer:

Software design activities are systematically classified to organize the design process and ensure
comprehensive system development.

Table: Classification of Design Activities

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 14 / 27

Coupling Type Description Example

Data Coupling
Modules communicate through
parameters

Function calls with simple
parameters

Stamp Coupling
Modules share composite data
structure

Passing record/structure as
parameter

Control
Coupling

One module controls another's
execution

Passing control flags

External
Coupling

Modules depend on external format Shared file format or protocol

Common
Coupling

Modules share global data Global variables access

Content
Coupling

One module modifies another's data
Direct access to another module's
data

Design Activity Levels:

System Level: Overall system architecture and major components

Subsystem Level: Individual subsystem design and interfaces

Component Level: Detailed module design and algorithms

Design Approaches:

Top-down design: Start with high-level and decompose

Bottom-up design: Build from individual components upward

Mnemonic: "Architects Interface Components Data" - Four main design activity classifications.

Question 4(b) [4 marks]
Define Coupling. Explain its classification.

Answer:

Coupling refers to the degree of interdependence between software modules. Lower coupling indicates
better software design with more maintainable and flexible code.

Table: Types of Coupling (Loosest to Tightest)

Coupling Characteristics:

Data coupling: Best type - minimal interdependence

Stamp coupling: Acceptable - shared data structures

Control coupling: Moderate - control information passed

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 15 / 27

includes includes extends

Customer Admin

Payment System

Browse Products Search
Products

Add to Cart

View
Cart

Checkout

Make Payment

Track Order Register Account Login/Logout View Order History Manage
Products

Manage Categories Process
Orders

Generate
Reports

Manage
Users

Update Inventory

Content coupling: Worst type - high interdependence

Benefits of Loose Coupling:

Maintainability: Easier to modify individual modules

Reusability: Modules can be used in different contexts

Testability: Modules can be tested independently

Mnemonic: "Data Stamp Control External Common Content" - Coupling types from loose to tight.

Question 4(c) [7 marks]
Draw a use case diagram for online shopping web application.

Answer:

A use case diagram shows the functional requirements of an online shopping system by illustrating actors
and their interactions with the system.

Diagram: Online Shopping Use Case Diagram

Key Use Cases Explained:

Customer Use Cases:

Browse Products: View available products by category

Search Products: Find specific products using keywords

Shopping Cart: Add, remove, and modify cart items

Checkout Process: Complete purchase with shipping details

Payment Processing: Handle secure payment transactions

Order Management: Track orders and view purchase history

Admin Use Cases:

Product Management: Add, edit, delete products and categories

Order Processing: Manage order fulfillment and shipping

User Management: Handle customer accounts and permissions

Reporting: Generate sales and inventory reports

System Relationships:

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 16 / 27

Characteristic Description Example

Consistency Uniform design across application Same button styles throughout

Simplicity Easy to understand and use Minimal, clean interface

Visibility Important elements clearly visible Key actions prominently displayed

Feedback System responds to user actions Progress bars, confirmations

Error Prevention Prevents user mistakes Input validation, confirmations

Flexibility Accommodates different user needs Customizable interfaces

Include: Mandatory sub-use cases (checkout includes payment)

Extend: Optional extensions (inventory update extends product management)

Inheritance: Specialized actor behaviors

Actors:

Primary Actors: Customer, Admin (initiate use cases)

Secondary Actors: Payment System (respond to system requests)

Mnemonic: "Customers Browse Buy, Admins Manage Monitor" - Core use case categories.

Question 4(a OR) [3 marks]
Explain the characteristics of good UI.

Answer:

Good User Interface (UI) design ensures effective user interaction with software systems through intuitive
and user-friendly design principles.

Table: Characteristics of Good UI

UI Design Principles:

User-centered: Design focused on user needs and goals

Accessibility: Usable by people with different abilities

Efficiency: Minimizes steps to complete tasks

Mnemonic: "Consistent Simple Visible Feedback" - Core UI design characteristics.

Question 4(b OR) [4 marks]
Define Cohesion. Explain its classification.

Answer:

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 17 / 27

Cohesion Type Description Example

Coincidental Elements grouped arbitrarily
Utility module with unrelated
functions

Logical
Elements perform similar logical
functions

All input/output operations

Temporal Elements executed at same time System initialization module

Procedural Elements follow specific sequence Sequential processing steps

Communicational Elements operate on same data Module processing same record

Sequential Output of one element is input to next Data transformation pipeline

Functional All elements contribute to single task Calculate employee salary

Cohesion refers to how closely related and focused the responsibilities of a single module are. High
cohesion indicates well-designed modules with related functionality.

Table: Types of Cohesion (Weakest to Strongest)

Cohesion Characteristics:

Functional cohesion: Best type - single, well-defined purpose

Sequential cohesion: Good - data flows through module

Communicational cohesion: Acceptable - operates on same data

Coincidental cohesion: Worst type - no logical relationship

Benefits of High Cohesion:

Maintainability: Easier to understand and modify

Reliability: Less likely to have errors

Reusability: Single-purpose modules more reusable

Mnemonic: "Coincidental Logical Temporal Procedural Communicational Sequential Functional" - Cohesion
types from weak to strong.

Question 4(c OR) [7 marks]
Draw context diagram for library system.

Answer:

A context diagram shows the library system as a single process with its external entities and data flows,
providing a high-level view of system boundaries.

Diagram: Library System Context Diagram

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 18 / 27

Book Request Return
Request

Book Details Due Date
Notice

Issue/Return Books Search BooksBook
Status

Member
Details

Add/Remove
Books

Manage MembersSystem Reports Overdue Reports Book
Catalog

Purchase Orders

Student

Librarian Administrator Publisher

Library Management
System

External Entities:

Student (Library Member):

Inputs: Book search requests, reservation requests, return notifications

Outputs: Book availability information, due dates, fine details

Librarian:

Inputs: Book issue/return transactions, member verification

Outputs: Book status updates, member information, transaction confirmations

Administrator:

Inputs: New book additions, member management, system configuration

Outputs: System reports, statistics, overdue notifications

Publisher/Supplier:

Inputs: Book catalogs, availability updates

Outputs: Purchase orders, procurement requests

Data Flows:

Book Information: Details about books, availability, location

Member Data: Student/faculty information, borrowing history

Transaction Records: Issue/return details, fine calculations

Reports: Usage statistics, overdue lists, inventory reports

System Boundary:
The context diagram clearly defines what is inside the library system (book management, member
management, transaction processing) and what is outside (external entities like students, staff, and
suppliers).

Key Data Stores (Internal to System):

Book catalog database

Member information database

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 19 / 27

Aspect Verification Validation

Question Are we building the product right? Are we building the right product?

Focus Process and standards compliance Product meets user needs

When Throughout development After product completion

Methods Reviews, inspections, walkthroughs Testing, user acceptance

Cost Lower cost of defect detection Higher cost but essential

Objective Ensure conformance to specifications Ensure fitness for use

Transaction history database

Fine and payment records

Mnemonic: "Students Librarians Admins Publishers" - Four main external entities interacting with library
system.

Question 5(a) [3 marks]
Differentiate verification and validation.

Answer:

Verification and validation are two complementary quality assurance processes that ensure software meets
requirements and user needs.

Table: Verification vs Validation

Verification Activities:

Code reviews: Checking code against coding standards

Design reviews: Ensuring design meets requirements

Document reviews: Verifying documentation completeness

Validation Activities:

System testing: Testing complete integrated system

User acceptance testing: End-user validation of functionality

Performance testing: Validating system performance requirements

Mnemonic: "Verification Verifies Process, Validation Validates Product" - Key distinction between the two.

Question 5(b) [4 marks]
Explain Code Review.

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 20 / 27

Type Description Participants Formality

Code Walkthrough
Author explains code to
reviewers

Author + 2-3 reviewers Informal

Code Inspection Formal systematic examination
Moderator, author,
reviewers

Formal

Peer Review Colleague reviews code changes 1-2 peer developers
Semi-
formal

Tool-Assisted
Review

Automated tools assist review Author + automated tools Variable

Answer:

Code Review is a systematic examination of source code by developers other than the author to identify
defects, improve code quality, and ensure adherence to coding standards.

Table: Types of Code Review

Code Review Process:

1. Preparation: Author prepares code and documentation

2. Review Meeting: Team examines code systematically

3. Defect Logging: Issues and improvements documented

4. Follow-up: Author addresses identified issues

5. Re-review: Verification of fixes if necessary

Review Criteria:

Functionality: Code performs intended operations correctly

Standards Compliance: Follows coding conventions and guidelines

Maintainability: Code is readable and well-documented

Performance: Efficient algorithms and resource usage

Benefits:

Defect Detection: Early identification of bugs and issues

Knowledge Sharing: Team learns from each other's code

Quality Improvement: Consistent coding standards across team

Mnemonic: "Reviews Reveal Errors Early" - Code reviews catch defects before testing.

Question 5(c) [7 marks]
Write a short note on White Box Testing.

Answer:

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 21 / 27

Technique Description Coverage Criteria

Statement Coverage Execute every statement All statements executed at least once

Branch Coverage Test all decision points All branches (true/false) covered

Path Coverage Test all possible paths All independent paths executed

Condition Coverage Test all conditions All boolean conditions tested

Code
Analysis

Test Case
Design

Test
Execution

Coverage
Analysis

Report Generation

White Box Testing is a software testing technique that examines the internal structure, design, and coding
of an application to verify input-output flow and improve design and usability.

Table: White Box Testing Techniques

White Box Testing Process:

Coverage Types Explained:

Statement Coverage:

Ensures every line of code is executed at least once

Formula: (Statements Executed / Total Statements) × 100

Minimum level of testing required

Branch Coverage:

Tests all decision points (if-else, switch-case)

Ensures both true and false conditions are tested

More thorough than statement coverage

Path Coverage:

Tests all possible execution paths through code

Most comprehensive but often impractical for complex programs

Uses cyclomatic complexity to determine paths

Condition Coverage:

Tests all boolean sub-expressions individually

Ensures each condition evaluates to both true and false

Important for complex conditional statements

White Box Testing Tools:

Static Analysis Tools: Examine code without execution

Dynamic Analysis Tools: Monitor code during execution

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 22 / 27

Coverage Tools: Measure test coverage percentage

Profiling Tools: Analyze performance characteristics

Advantages:

Thorough Testing: Examines all code paths and logic

Early Defect Detection: Finds errors during development

Optimization: Identifies unused code and inefficiencies

Security Testing: Reveals potential security vulnerabilities

Disadvantages:

Time Consuming: Requires detailed code knowledge

Expensive: Needs skilled testers familiar with code

Limited Scope: May miss integration and system-level issues

Maintenance: Test cases need updates with code changes

White Box vs Black Box:

White Box: Internal structure focus, code-based testing

Black Box: Functional behavior focus, specification-based testing

Complementary: Both approaches needed for comprehensive testing

Test Case Design Guidelines:

Boundary Testing: Test edge cases and limits

Loop Testing: Verify loop conditions and iterations

Data Flow Testing: Follow variable definitions and usage

Control Flow Testing: Test decision logic and branches

Mnemonic: "White Box Sees Inside Structure" - Internal code structure testing approach.

Question 5(a OR) [3 marks]
List out various coding standards and guidelines.

Answer:

Coding standards and guidelines ensure consistent, readable, and maintainable code across development
teams and projects.

Table: Coding Standards Categories

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 23 / 27

Category Standards Examples

Naming Conventions Variable, function, class naming camelCase, PascalCase

Code Structure Indentation, spacing, brackets 4-space indentation

Documentation Comments, function headers Inline comments, API docs

Error Handling Exception handling, logging Try-catch blocks

Aspect Test Case Test Suite

Definition Single test scenario Collection of test cases

Scope Specific functionality Related functionalities

Execution Individual test Group execution

Management Single test management Batch management

Common Coding Guidelines:

Meaningful names: Use descriptive variable and function names

Consistent indentation: Use consistent spacing (2 or 4 spaces)

Comment code: Explain complex logic and business rules

Function size: Keep functions small and focused

Error handling: Implement proper exception handling

Language-Specific Standards:

Java: Oracle Java Code Conventions

Python: PEP 8 Style Guide

JavaScript: Airbnb JavaScript Style Guide

C++: Google C++ Style Guide

Mnemonic: "Names Structure Documentation Errors" - Four main coding standard categories.

Question 5(b OR) [4 marks]
Explain Test cases and Test suite with example.

Answer:

Test cases are specific conditions under which a tester determines whether a software application is
working correctly, while a test suite is a collection of related test cases.

Table: Test Case vs Test Suite

Test Case Components:

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 24 / 27

Test Case ID: Unique identifier (TC_001)

Test Description: What is being tested

Preconditions: Setup requirements

Test Steps: Step-by-step procedure

Expected Result: Expected outcome

Actual Result: Observed outcome

Status: Pass/Fail/Blocked

Example Test Case:

Test Suite Example:

Login Test Suite: Contains all login-related test cases

TC_LOGIN_001: Valid login

TC_LOGIN_002: Invalid username

TC_LOGIN_003: Invalid password

TC_LOGIN_004: Empty fields

Mnemonic: "Cases Test Functions, Suites Group Cases" - Individual vs collection relationship.

Question 5(c OR) [7 marks]
Write a short note on Black Box Testing.

Answer:

Black Box Testing is a software testing method that examines functionality without knowledge of internal
code structure, focusing on input-output behavior and requirement compliance.

Table: Black Box Testing Techniques

Test Case ID: TC_LOGIN_001
Description: Verify user login with valid credentials
Preconditions: User account exists in system
Test Steps:
1. Navigate to login page
2. Enter valid username
3. Enter valid password
4. Click Login button
Expected Result: User redirected to dashboard
Actual Result: [To be filled during execution]
Status: [Pass/Fail]

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 25 / 27

Technique Description Application

Equivalence Partitioning Divide inputs into equivalent groups Input validation testing

Boundary Value Analysis Test edge values and boundaries Range and limit testing

Decision Table Testing Test combinations of conditions Complex business logic

State Transition Testing Test state changes Workflow and status testing

Use Case Testing Test user scenarios End-to-end functionality

Requirement Analysis Test Case
Design

Test Data Preparation Test
Execution

Result
Analysis

Black Box Testing Process:

Testing Techniques Explained:

Equivalence Partitioning:

Divides input domain into classes of equivalent data

One test case from each partition represents entire class

Reduces number of test cases while maintaining coverage

Example: Age input (0-17: Minor, 18-65: Adult, 65+: Senior)

Boundary Value Analysis:

Tests values at boundaries of equivalence partitions

Focuses on edge cases where errors commonly occur

Tests minimum, maximum, and just inside/outside boundaries

Example: For range 1-100, test: 0, 1, 2, 99, 100, 101

Decision Table Testing:

Represents complex business rules in tabular format

Shows all possible combinations of conditions and actions

Ensures complete coverage of business logic scenarios

Useful for systems with multiple interacting conditions

State Transition Testing:

Models system behavior as states and transitions

Tests valid and invalid state changes

Verifies system handles state transitions correctly

Example: Order states (Pending → Processing → Shipped → Delivered)

Use Case Testing:

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 26 / 27

Based on user scenarios and use cases

Tests complete business workflows end-to-end

Focuses on user perspective and real-world usage

Validates system meets user requirements

Black Box Testing Levels:

Unit Testing: Individual component functionality

Integration Testing: Component interaction testing

System Testing: Complete system functionality

Acceptance Testing: User requirement validation

Advantages:

User Perspective: Tests from end-user viewpoint

No Code Knowledge: Testers don't need programming skills

Unbiased Testing: Not influenced by code implementation

Early Testing: Can start with requirements specification

Disadvantages:

Limited Coverage: May miss internal logic errors

Inefficient: Difficult to identify all possible inputs

Redundant Testing: May duplicate test scenarios

Blind Testing: Cannot target specific code areas

Test Data Design:

Valid Inputs: Test normal operational conditions

Invalid Inputs: Test error handling capabilities

Edge Cases: Test boundary conditions and limits

Stress Inputs: Test system under extreme conditions

Black Box vs White Box Comparison:

Black Box: External behavior, specification-based

White Box: Internal structure, code-based

Gray Box: Combination of both approaches

Complementary: Both needed for thorough testing

Mnemonic: "Black Box Behavior Based" - Focus on external functionality without internal knowledge.

Fundamentals of Software Development (4331604) - Summer 2024 Solution by Milav Dabgar

No. 27 / 27

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

