
Term Definition

Problem Solving Systematic process of finding solutions to complex issues using logical thinking

Algorithm Step-by-step procedure to solve a problem with finite operations

Pseudo Code Informal description of program logic using plain English-like syntax

Symbol Shape Purpose

Oval ⬭ Start/End

Rectangle Process/Action

Diamond ◊ Decision

Parallelogram ▱ Input/Output

Yes

No

Start Input A,
B

A > B?

Max =
A

Max =
B

Display
Max

End

Question 1(a) [3 marks]
Define Problem Solving, Algorithm and Pseudo Code.

Answer:

Problem Solving: Breaking down complex problems into manageable steps

Algorithm: Must be finite, definite, effective, and produce correct output

Pseudo Code: Bridge between human language and programming code

Mnemonic: "PAP - Problem, Algorithm, Pseudo"

Question 1(b) [4 marks]
Explain various Flowchart Symbols. Design a Flowchart to find maximum number out of two given
numbers

Answer:

Flowchart for Maximum of Two Numbers:

Start/End: Entry and exit points

Input/Output: Data flow operations

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 1 / 18

Operator Symbol Example Result

Addition + 5 + 3 8

Subtraction - 5 - 3 2

Multiplication * 5 * 3 15

Division / 5 / 3 1.667

Floor Division // 5 // 3 1

Modulus % 5 % 3 2

Exponentiation ** 5 ** 3 125

Decision: Conditional branching

Process: Computational steps

Mnemonic: "SIPO - Start, Input, Process, Output"

Question 1(c) [7 marks]
List out various arithmetic operators of python. Write Python Code that performs various
arithmetic operations.

Answer:

Code:

Mnemonic: "Add-Sub-Mul-Div-Floor-Mod-Pow"

Question 1(c OR) [7 marks]
List out various comparison operators of python. Write Python Code which performs various
comparison operations.

Answer:

a = 10
b = 3
print(f"Addition: {a + b}")
print(f"Subtraction: {a - b}")
print(f"Multiplication: {a * b}")
print(f"Division: {a / b}")
print(f"Floor Division: {a // b}")
print(f"Modulus: {a % b}")
print(f"Power: {a ** b}")

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 2 / 18

Operator Symbol Purpose Example

Equal == Check equality 5 == 3 → False

Not Equal != Check inequality 5 != 3 → True

Greater Than > Check greater 5 > 3 → True

Less Than < Check smaller 5 < 3 → False

Greater Equal >= Check greater/equal 5 >= 3 → True

Less Equal <= Check smaller/equal 5 <= 3 → False

Operator Purpose Example

in Check if element exists 'a' in 'apple' → True

not in Check if element doesn't exist 'z' not in 'apple' → True

Code:

Mnemonic: "Equal-Not-Greater-Less-GreaterEqual-LessEqual"

Question 2(a) [3 marks]
Write short note on membership operators.

Answer:

in operator: Returns True if element found in sequence

not in operator: Returns True if element not found in sequence

Usage: Lists, strings, tuples, dictionaries

Mnemonic: "In-Not-In for membership testing"

Question 2(b) [4 marks]
Define Python. Write down various applications of Python Programming.

Answer:

x = 8
y = 5
print(f"Equal: {x == y}")
print(f"Not Equal: {x != y}")
print(f"Greater: {x > y}")
print(f"Less: {x < y}")
print(f"Greater Equal: {x >= y}")
print(f"Less Equal: {x <= y}")

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 3 / 18

Application Area Examples

Web Development Django, Flask frameworks

Data Science NumPy, Pandas, Matplotlib

AI/ML TensorFlow, Scikit-learn

Desktop Apps Tkinter, PyQt

Game Development Pygame library

Unit Range Rate per Unit

≤ 100 Rs 5.00

101-200 Rs 7.50

201-300 Rs 10.00

≥ 301 Rs 15.00

Python Definition: High-level, interpreted programming language known for simplicity and readability.

Interpreted: No compilation needed

Cross-platform: Runs on multiple OS

Large libraries: Extensive standard library

Mnemonic: "Web-Data-AI-Desktop-Games"

Question 2(c) [7 marks]
Write python program which calculates electricity bill using following details.

Answer:

Table of Rates:

Code:

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 4 / 18

Operator Purpose Example

is Check same object a is b

is not Check different object a is not b

Conditional logic: if-elif-else structure

Rate calculation: Based on unit slabs

User input: Interactive billing system

Mnemonic: "Input-Check-Calculate-Display"

Question 2(a OR) [3 marks]
Write short note on identity operators.

Answer:

is operator: Compares object identity, not values

is not operator: Checks if objects are different

Memory comparison: Checks same memory location

Mnemonic: "Is-IsNot for object identity"

Question 2(b OR) [4 marks]
What is indentation in Python? Explain various features of Python.

Answer:

Indentation: Whitespace at line beginning to define code blocks.

units = int(input("Enter consumed units: "))

if units <= 100:
 bill = units * 5.00
elif units <= 200:
 bill = units * 7.50
elif units <= 300:
 bill = units * 10.00
else:
 bill = units * 15.00

print(f"Total Bill: Rs {bill}")

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 5 / 18

Feature Description

Simple Syntax Easy to read and write

Interpreted No compilation step

Object-Oriented Supports OOP concepts

Cross-Platform Runs on multiple OS

Large Library Extensive standard library

Percentage Grade

≥ 70 Distinction

60-69 First Class

50-59 Second Class

35-49 Pass Class

< 35 Fail

Indentation: Replaces curly braces {}

Consistent: Usually 4 spaces per level

Mandatory: Creates code structure

Mnemonic: "Simple-Interpreted-Object-Cross-Large"

Question 2(c OR) [7 marks]
Write a python program that calculates Student's class/grade using following details.

Answer:

Grading Table:

Code:

percentage = float(input("Enter percentage: "))

if percentage >= 70:
 grade = "Distinction"
elif percentage >= 60:
 grade = "First Class"
elif percentage >= 50:
 grade = "Second Class"
elif percentage >= 35:
 grade = "Pass Class"
else:

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 6 / 18

Statement Type Purpose

if Single condition check

if-else Two-way branching

if-elif-else Multi-way branching

nested if Conditions within conditions

Loop Type Structure

Outer Loop Controls iterations

Inner Loop Executes completely for each outer iteration

Total Iterations Outer × Inner

Multiple conditions: Nested if-elif structure

Grade assignment: Based on percentage ranges

Float input: Handles decimal percentages

Mnemonic: "Distinction-First-Second-Pass-Fail"

Question 3(a) [3 marks]
What is Selection Control Statement? List it out.

Answer:

Selection statements: Control program flow based on conditions

Boolean evaluation: Uses True/False logic

Branching: Different paths of execution

Mnemonic: "If-IfElse-IfElif-Nested"

Question 3(b) [4 marks]
Write short note on nested loops.

Answer:

Nested structure: Loop inside another loop

Complete execution: Inner loop finishes before outer continues

Pattern creation: Useful for 2D structures

 grade = "Fail"

print(f"Grade: {grade}")

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 7 / 18

Code Example:

Mnemonic: "Outer-Inner-Complete-Pattern"

Question 3(c) [7 marks]
Write a user-define function that displays all numbers, which are divisible by 4 from 1 to 100.

Answer:

Code:

Alternative with return:

Function definition: def keyword usage

Range function: 1 to 100 iteration

Modulus check: num % 4 == 0 condition

List comprehension: Alternative approach

Mnemonic: "Define-Range-Check-Display"

Question 3(a OR) [3 marks]
What is Repetition Control Statement? List it out.

Answer:

for i in range(3):
 for j in range(2):
 print(f"i={i}, j={j}")

def display_divisible_by_4():
 print("Numbers divisible by 4 from 1 to 100:")
 for num in range(1, 101):
 if num % 4 == 0:
 print(num, end=" ")
 print()

Function call
display_divisible_by_4()

def get_divisible_by_4():
 return [num for num in range(1, 101) if num % 4 == 0]

result = get_divisible_by_4()
print(result)

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 8 / 18

Statement Type Purpose

for loop Known number of iterations

while loop Condition-based repetition

nested loop Loop within loop

Aspect break continue

Purpose Exit loop completely Skip current iteration

Execution Jumps out of loop Jumps to next iteration

Usage Terminate loop early Skip specific conditions

Effect Loop ends Loop continues

Repetition statements: Execute code blocks repeatedly

Iteration control: Different methods of looping

Loop variables: Track iteration progress

Mnemonic: "For-While-Nested"

Question 3(b OR) [4 marks]
Differentiate break and continue statements.

Answer:

Code Example:

Mnemonic: "Break-Exit, Continue-Skip"

Question 3(c OR) [7 marks]
Write a user-define function which displays all even numbers from 1 to 100.

break example
for i in range(5):
 if i == 3:
 break
 print(i) # Output: 0, 1, 2

continue example
for i in range(5):
 if i == 2:
 continue
 print(i) # Output: 0, 1, 3, 4

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 9 / 18

Function Type Description

Built-in Pre-defined functions (print, len)

User-defined Created by programmer

Lambda Anonymous single-line functions

Recursive Functions calling themselves

Answer:

Code:

Efficient range: range(2, 101, 2) for even numbers

Modulus method: Alternative checking with % 2 == 0

Function design: Reusable code block

Mnemonic: "Range-Step-Even-Display"

Question 4(a) [3 marks]
Define Function. List out various types of Functions available in Python.

Answer:

Function: Reusable block of code that performs specific task.

Code reusability: Write once, use many times

Modularity: Breaking complex problems into smaller parts

Parameters: Input values to functions

Mnemonic: "Built-User-Lambda-Recursive"

Question 4(b) [4 marks]

def display_even_numbers():
 print("Even numbers from 1 to 100:")
 for num in range(2, 101, 2):
 print(num, end=" ")
 print()

Alternative method
def display_even_alt():
 even_nums = []
 for num in range(1, 101):
 if num % 2 == 0:
 even_nums.append(num)
 print(even_nums)

Function call
display_even_numbers()

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 10 / 18

Scope Type Description Example

Local Inside function only Function variables

Global Throughout program Module-level variables

Built-in Python keywords print, len, type

Question 4(b) [4 marks]
Write short note on Scope of a variable.

Answer:

Code Example:

Variable accessibility: Where variables can be used

LEGB rule: Local, Enclosing, Global, Built-in

Mnemonic: "Local-Global-Builtin"

Question 4(c) [7 marks]
Write Python code which asks user for Main string and Substring and checks membership of a
Substring in the Main String.

Answer:

Code:

x = 10 # Global variable

def my_function():
 y = 20 # Local variable
 print(x) # Access global
 print(y) # Access local

my_function()
print(y) # Error: y not accessible

def check_substring():
 main_string = input("Enter main string: ")
 substring = input("Enter substring: ")

 if substring in main_string:
 print(f"'{substring}' found in '{main_string}'")
 print(f"Position: {main_string.find(substring)}")
 else:
 print(f"'{substring}' not found in '{main_string}'")

Enhanced version with case handling

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 11 / 18

Variable Type Scope Lifetime Access

Local Function only Function execution Limited

Global Entire program Program execution Widespread

User interaction: input() for string collection

Membership testing: 'in' operator usage

Case sensitivity: Optional case handling

Mnemonic: "Input-Check-Report-Position"

Question 4(a OR) [3 marks]
What is Local variable and Global variable?

Answer:

Example:

Local variables: Created inside functions

Global variables: Created outside functions

Mnemonic: "Local-Limited, Global-Everywhere"

Question 4(b OR) [4 marks]
Explain any four built-in functions of Python.

def check_substring_enhanced():
 main_string = input("Enter main string: ")
 substring = input("Enter substring: ")

 if substring.lower() in main_string.lower():
 print("Substring found (case-insensitive)")
 else:
 print("Substring not found")

check_substring()

global_var = 100 # Global

def function():
 local_var = 50 # Local
 print(global_var) # ✓ Accessible
 print(local_var) # ✓ Accessible

print(global_var) # ✓ Accessible
print(local_var) # ✗ Error

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 12 / 18

Function Purpose Example

len() Returns length len("hello") → 5

type() Returns data type type(10) → <class 'int'>

input() Gets user input name = input("Name: ")

print() Displays output print("Hello")

Answer:

Additional Examples:

Mnemonic: "Length-Type-Input-Print"

Question 4(c OR) [7 marks]
Write Python code which locates a substring in a given string.

Answer:

Code:

len() function
print(len([1, 2, 3, 4])) # Output: 4

type() function
print(type(3.14)) # Output: <class 'float'>

input() function
age = input("Enter age: ")

print() function
print("Your age is:", age)

def locate_substring():
 main_string = input("Enter main string: ")
 substring = input("Enter substring to find: ")

 # Method 1: Using find()
 position = main_string.find(substring)
 if position != -1:
 print(f"Found at index: {position}")
 else:
 print("Substring not found")

 # Method 2: Using index() with exception handling
 try:
 position = main_string.index(substring)
 print(f"Located at index: {position}")

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 13 / 18

Operation Method Example

Concatenation + "Hello" + "World"

Repetition * "Hi" * 3

Slicing [start:end] "Hello"[1:4]

Length len() len("Hello")

Case upper(), lower() "hello".upper()

find() method: Returns index or -1

index() method: Returns index or raises exception

Multiple occurrences: Loop to find all positions

Mnemonic: "Find-Index-Exception-Multiple"

Question 5(a) [3 marks]
Define String. List out various string operations.

Answer:

String: Sequence of characters enclosed in quotes.

Immutable: Strings cannot be changed after creation

Indexing: Access individual characters

Methods: Built-in functions for manipulation

Mnemonic: "Concat-Repeat-Slice-Length-Case"

Question 5(b) [4 marks]

 except ValueError:
 print("Substring not found")

 # Method 3: Find all occurrences
 positions = []
 start = 0
 while True:
 pos = main_string.find(substring, start)
 if pos == -1:
 break
 positions.append(pos)
 start = pos + 1

 if positions:
 print(f"All positions: {positions}")

locate_substring()

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 14 / 18

Method Operator Returns

in element in list True/False

not in element not in list True/False

count() list.count(element) Number of occurrences

Question 5(b) [4 marks]
How can we identify whether an element is a member of a list or not? Explain with a suitable
example.

Answer:

Example:

Boolean result: True if found, False otherwise

Case sensitive: "Apple" ≠ "apple"

Efficiency: 'in' operator is most common

Mnemonic: "In-NotIn-Count for membership"

Question 5(c) [7 marks]
Write Python code that replaces a substring with another substring of a given string. Consider the
given string as 'Welcome to GTU' and replace the substring 'GTU' with 'Gujarat Technological
University'.

Answer:

Code:

fruits = ["apple", "banana", "orange", "mango"]

Using 'in' operator
if "apple" in fruits:
 print("Apple is available")

Using 'not in' operator
if "grapes" not in fruits:
 print("Grapes not available")

Using count() method
count = fruits.count("apple")
if count > 0:
 print(f"Apple found {count} times")

def replace_substring():
 # Given string

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 15 / 18

Output:

replace() method: Built-in string function

Slicing method: Manual string manipulation

All occurrences: Replaces every instance

Mnemonic: "Find-Replace-Slice-All"

Question 5(a OR) [3 marks]
Define List. List out various list operations.

Answer:

List: Ordered collection of items that can be modified.

 original = "Welcome to GTU"
 old_substring = "GTU"
 new_substring = "Gujarat Technological University"

 # Method 1: Using replace()
 result1 = original.replace(old_substring, new_substring)
 print(f"Original: {original}")
 print(f"Modified: {result1}")

 # Method 2: Manual replacement
 if old_substring in original:
 index = original.find(old_substring)
 result2 = original[:index] + new_substring + original[index +
len(old_substring):]
 print(f"Manual method: {result2}")

 # Method 3: Replace all occurrences
 test_string = "GTU offers GTU degree from GTU"
 result3 = test_string.replace("GTU", "Gujarat Technological University")
 print(f"Multiple replacements: {result3}")

replace_substring()

Original: Welcome to GTU
Modified: Welcome to Gujarat Technological University

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 16 / 18

Operation Method Example

Add append(), insert() list.append(item)

Remove remove(), pop() list.remove(item)

Access [index] list[0]

Slice [start:end] list[1:3]

Sort sort() list.sort()

Syntax Description Example

[start:] From start to end "Hello"[1:] → "ello"

[:end] From beginning to end "Hello"[:3] → "Hel"

[start:end] Specific range "Hello"[1:4] → "ell"

[::-1] Reverse string "Hello"[::-1] → "olleH"

Mutable: Lists can be changed after creation

Indexed: Elements accessed by position

Dynamic: Size can grow or shrink

Mnemonic: "Add-Remove-Access-Slice-Sort"

Question 5(b OR) [4 marks]
Write short note on String Slicing. Explain with suitable example.

Answer:

String Slicing: Extracting parts of string using [start step].

Example:

Negative indexing: -1 for last character

Step parameter: Controls increment

Mnemonic: "Start-End-Step for slicing"

Question 5(c OR) [7 marks]

text = "Python Programming"

print(text[0:6]) # "Python"
print(text[7:]) # "Programming"
print(text[:6]) # "Python"
print(text[::2]) # "Pto rgamn"
print(text[::-1]) # "gnimmargorP nohtyP"

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 17 / 18

Question 5(c OR) [7 marks]
Write Python code which counts the number of times the specified element appears in the list.

Answer:

Code:

count() method: Built-in list function

Manual iteration: Using loops for counting

List comprehension: Pythonic way of counting

Type flexibility: Works with any data type

Mnemonic: "Count-Manual-Comprehension-Flexible"

def count_element_occurrences():
 # Create a sample list
 numbers = [1, 2, 3, 2, 4, 2, 5, 2, 6]
 element = int(input("Enter element to count: "))

 # Method 1: Using count() method
 count1 = numbers.count(element)
 print(f"Using count(): {element} appears {count1} times")

 # Method 2: Manual counting
 count2 = 0
 for num in numbers:
 if num == element:
 count2 += 1
 print(f"Manual count: {element} appears {count2} times")

 # Method 3: List comprehension
 count3 = len([x for x in numbers if x == element])
 print(f"List comprehension: {element} appears {count3} times")

 # Method 4: For any type of list
 mixed_list = [1, "hello", 3.14, "hello", True, "hello"]
 element_str = input("Enter element to search in mixed list: ")
 count4 = mixed_list.count(element_str)
 print(f"In mixed list: '{element_str}' appears {count4} times")

count_element_occurrences()

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

No. 18 / 18

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

