Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Define Problem Solving, Algorithm and Pseudo Code.

Answer:
Term Definition
Problem Solving Systematic process of finding solutions to complex issues using logical thinking
Algorithm Step-by-step procedure to solve a problem with finite operations
Pseudo Code Informal description of program logic using plain English-like syntax

e Problem Solving: Breaking down complex problems into manageable steps
e Algorithm: Must be finite, definite, effective, and produce correct output

e Pseudo Code: Bridge between human language and programming code

Mnemonic: "PAP - Problem, Algorithm, Pseudo"

Question 1(b) [4 marks]

Explain various Flowchart Symbols. Design a Flowchart to find maximum number out of two given
numbers

Answer:
Symbol Shape Purpose
Oval o Start/End
Rectangle = Process/Action
Diamond Y Decision
Parallelogram =4 Input/Output

Flowchart for Maximum of Two Numbers:

Yes—» Max =

No—» Max =

e Start/End: Entry and exit points

e Input/Output: Data flow operations

No.1/18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

e Decision: Conditional branching

® Process: Computational steps

Mnemonic: "SIPO - Start, Input, Process, Output"

Question 1(c) [7 marks]

List out various arithmetic operators of python. Write Python Code that performs various
arithmetic operations.

Answer:
Operator Symbol Example Result
Addition + 5+3 8
Subtraction - 5-3 2
Multiplication * 5#%3 15
Division / 5/3 1.667
Floor Division /1 5//3 1
Modulus % 5%3 2
Exponentiation *k 5**3 125
Code:
a =10
b =3

print(f"Addition: {a + b}")
print(f"Subtraction: {a - b}")
print(f"Multiplication: {a * b}")
print(f"Division: {a / b}")

print (f"Floor Division: {a // b}")
print (f"Modulus: {a % b}")
print(f"Power: {a ** b}")

Mnemonic: "Add-Sub-Mul-Div-Floor-Mod-Pow"

Question 1(c OR) [7 marks]

List out various comparison operators of python. Write Python Code which performs various
comparison operations.

Answer:

No. 2 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Operator Symbol Purpose

Equal == Check equality

Not Equal I= Check inequality

Greater Than > Check greater

Less Than < Check smaller

Greater Equal >= Check greater/equal

Less Equal <= Check smaller/equal
Code:

x =8

y =5

print (f"Equal: {x == y}")
print(f£"Not Equal: {x != y}")
print (f"Greater: {x > y}")
print(f"Less: {x < y}")

print (f"Greater Equal: {x >= y}")
print(f"Less Equal: {x <= y}")

Mnemonic: "Equal-Not-Greater-Less-GreaterEqual-LessEqual”

Question 2(a) [3 marks]

Write short note on membership operators.

Answer:
Operator Purpose
in Check if element exists
not in Check if element doesn't exist

e in operator: Returns True if element found in sequence

e not in operator: Returns True if element not found in sequence

e Usage: Lists, strings, tuples, dictionaries

Mnemonic: "In-Not-In for membership testing"

Question 2(b) [4 marks]

Define Python. Write down various applications of Python Programming.

Answer:

No. 3 /18

Example
5==3 - False
5!1=3 - True
5>3 - True
5<3 - False
5>=3 — True

5<=3 — False

'a"in 'apple’ — True

'Z' not in 'apple' — True

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Python Definition: High-level, interpreted programming language known for simplicity and readability.

Application Area Examples

Web Development Django, Flask frameworks
Data Science NumPy, Pandas, Matplotlib
Al/ML TensorFlow, Scikit-learn
Desktop Apps Tkinter, PyQt

Game Development Pygame library

¢ Interpreted: No compilation needed
e Cross-platform: Runs on multiple OS

e Large libraries: Extensive standard library

Mnemonic: "Web-Data-Al-Desktop-Games"

Question 2(c) [7 marks]

Write python program which calculates electricity bill using following details.
Answer:

Table of Rates:

Unit Range Rate per Unit

<100 Rs 5.00

101-200 Rs 7.50

201-300 Rs 10.00

> 301 Rs 15.00
Code:

No. 4 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

units = int(input("Enter consumed units: "))

if units <= 100:

bill = units * 5.00
elif units <= 200:

bill = units * 7.50
elif units <= 300:

bill = units * 10.00
else:

bill = units * 15.00

print(f"Total Bill: Rs {bill}")
e Conditional logic: if-elif-else structure

e Rate calculation: Based on unit slabs

e User input: Interactive billing system

Mnemonic: "Input-Check-Calculate-Display"

Question 2(a OR) [3 marks]

Write short note on identity operators.

Answer:
Operator Purpose Example
is Check same object aisb
is not Check different object aisnotb

e jsoperator: Compares object identity, not values
e is not operator: Checks if objects are different

e Memory comparison: Checks same memory location

Mnemonic: "Is-IsNot for object identity"

Question 2(b OR) [4 marks]

What is indentation in Python? Explain various features of Python.
Answer:

Indentation: Whitespace at line beginning to define code blocks.

No.5 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Feature

Simple Syntax
Interpreted
Object-Oriented
Cross-Platform

Large Library

¢ Indentation: Replaces curly braces {}

e Consistent: Usually 4 spaces per level

e Mandatory: Creates code structure

Description

Easy to read and write
No compilation step
Supports OOP concepts
Runs on multiple OS

Extensive standard library

Mnemonic: "Simple-Interpreted-Object-Cross-Large"

Question 2(c OR) [7 marks]

Write a python program that calculates Student's class/grade using following details.

Answer:

Grading Table:

Percentage
>70

60-69

50-59

35-49

<35

Code:

Grade

Distinction

First Class

Second Class

Pass Class

Fail

percentage = float(input("Enter percentage: "))

if percentage >= 70:
grade = "Distinction"
elif percentage >= 60:
grade = "First Class"
elif percentage >= 50:
grade = "Second Class"
elif percentage >= 35:
grade = "Pass Class"

else:

No. 6 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

grade = "Fail"
print (f"Grade: {grade}")
e Multiple conditions: Nested if-elif structure

e Grade assignment: Based on percentage ranges

¢ Float input: Handles decimal percentages

Mnemonic: "Distinction-First-Second-Pass-Fail"

Question 3(a) [3 marks]

What is Selection Control Statement? List it out.

Answer:
Statement Type Purpose
if Single condition check
if-else Two-way branching
if-elif-else Multi-way branching
nested if Conditions within conditions

e Selection statements: Control program flow based on conditions
e Boolean evaluation: Uses True/False logic

e Branching: Different paths of execution

Mnemonic: "If-IfElse-IfElif-Nested"

Question 3(b) [4 marks]

Write short note on nested loops.

Answer:
Loop Type Structure
Outer Loop Controls iterations
Inner Loop Executes completely for each outer iteration
Total Iterations Outer x Inner

e Nested structure: Loop inside another loop
e Complete execution: Inner loop finishes before outer continues

e Pattern creation: Useful for 2D structures

No.7 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Code Example:

for i in range(3):
for j in range(2):
print(£'i={i}, 3={j}")

Mnemonic: "Outer-Inner-Complete-Pattern”

Question 3(c) [7 marks]

Write a user-define function that displays all numbers, which are divisible by 4 from 1 to 100.
Answer:

Code:

def display divisible by 4():
print("Numbers divisible by 4 from 1 to 100:")
for num in range(l, 101):
if num & 4 ==
print (num, end=" ")

print()

Function call

display divisible by 4()
Alternative with return:

def get divisible by 4():
return [num for num in range(l, 101) if num % 4 == 0]

result = get divisible by 4()

print(result)

Function definition: def keyword usage

Range function: 1 to 100 iteration

Modulus check: num % 4 == 0 condition

List comprehension: Alternative approach

Mnemonic: "Define-Range-Check-Display"

Question 3(a OR) [3 marks]

What is Repetition Control Statement? List it out.

Answer:

No. 8 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Statement Type Purpose

for loop Known number of iterations
while loop Condition-based repetition
nested loop Loop within loop

e Repetition statements: Execute code blocks repeatedly
¢ Iteration control: Different methods of looping

e Loop variables: Track iteration progress

Mnemonic: "For-While-Nested"

Question 3(b OR) [4 marks]

Differentiate break and continue statements.

Answer:
Aspect break continue
Purpose Exit loop completely Skip current iteration
Execution Jumps out of loop Jumps to next iteration
Usage Terminate loop early Skip specific conditions
Effect Loop ends Loop continues

Code Example:

break example
for i in range(5):
if i ==
break

print(i) # Output: 0, 1, 2
continue example
for i in range(5):

if i ==

continue
print(i) # Output: 0, 1, 3, 4

Mnemonic: "Break-Exit, Continue-Skip"

Question 3(c OR) [7 marks]

Write a user-define function which displays all even numbers from 1 to 100.

No.9/18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Answer:

Code:

def display even numbers():
print("Even numbers from 1 to 100:")
for num in range(2, 101, 2):
print (num, end=" ")

print()

Alternative method
def display even alt():
even _nums = []
for num in range(l, 101):
if num & 2 ==
even_nums.append (num)

print(even_ nums)

Function call

display_ even_numbers()

e Efficient range: range(2, 101, 2) for even numbers
e Modulus method: Alternative checking with % 2 ==

e Function design: Reusable code block

Mnemonic: "Range-Step-Even-Display"

Question 4(a) [3 marks]

Define Function. List out various types of Functions available in Python.
Answer:

Function: Reusable block of code that performs specific task.

Function Type Description

Built-in Pre-defined functions (print, len)
User-defined Created by programmer
Lambda Anonymous single-line functions
Recursive Functions calling themselves

e Code reusability: Write once, use many times
e Modularity: Breaking complex problems into smaller parts

e Parameters: Input values to functions

Mnemonic: "Built-User-Lambda-Recursive"

No. 10 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Question 4(b) [4 marks]

Write short note on Scope of a variable.

Answer:
Scope Type Description Example
Local Inside function only Function variables
Global Throughout program Module-level variables
Built-in Python keywords print, len, type

Code Example:

x = 10 # Global variable

def my_ function():
y = 20 # Local variable
print(x) # Access global
print(y) # Access local

my_ function()
print(y) # Error: y not accessible

e Variable accessibility: Where variables can be used

e LEGB rule: Local, Enclosing, Global, Built-in

Mnemonic: "Local-Global-Builtin"

Question 4(c) [7 marks]

Write Python code which asks user for Main string and Substring and checks membership of a
Substring in the Main String.

Answer:
Code:
def check_substring():

main_string = input("Enter main string: ")

substring = input("Enter substring: ")

if substring in main_string:
print(f"'{substring}' found in '{main_string}'")
print(f"Position: {main_string.find(substring)}")
else:

print (f"'{substring}' not found in '{main string}'")
Enhanced version with case handling

No. 11 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

def check substring enhanced():
main_string = input("Enter main string: ")

substring = input("Enter substring: ")

if substring.lower() in main_string.lower():
print("Substring found (case-insensitive)")
else:

print ("Substring not found")
check_substring()
e User interaction: input() for string collection

e Membership testing: 'in' operator usage

e Case sensitivity: Optional case handling

Mnemonic: "Input-Check-Report-Position"

Question 4(a OR) [3 marks]

What is Local variable and Global variable?

Answer:
Variable Type Scope Lifetime Access
Local Function only Function execution Limited
Global Entire program Program execution Widespread
Example:

global_var = 100 # Global

def function():
local var = 50 # Local
print(global var) # v Accessible

print(local_var) # v Accessible

print(global var) # v Accessible

print(local var) # X Error

e Local variables: Created inside functions

e Global variables: Created outside functions

Mnemonic: "Local-Limited, Global-Everywhere"

Question 4(b OR) [4 marks]

Explain any four built-in functions of Python.

No. 12 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Answer:
Function Purpose Example
len() Returns length len("hello") — 5
type() Returns data type type(10) — <class 'int'>
input() Gets user input name = input("Name: ")
print() Displays output print("Hello")

Additional Examples:

len() function

print(len([1l, 2, 3, 4])) # Output: 4

type() function
print(type(3.14)) # Output: <class 'float'>

input() function

age = input("Enter age: ")

print() function

print("Your age is:", age)

Mnemonic: "Length-Type-Input-Print"

Question 4(c OR) [7 marks]

Write Python code which locates a substring in a given string.
Answer:

Code:

def locate substring():
main_string = input("Enter main string: ")

substring = input("Enter substring to find: ")

Method 1: Using find()
position = main_string.find(substring)
if position != -1:

print (f"Found at index: {position}")
else:

print ("Substring not found")

Method 2: Using index() with exception handling
try:
position = main_string.index(substring)

print (f"Located at index: {position}")

No. 13 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

except ValueError:

print ("Substring not found")

Method 3: Find all occurrences

positions = []
start = 0

while True:

pos = main_string.find(substring, start)
if pos == -1:
break
positions.append(pos)
start = pos + 1

if positions:

print (f"All positions: {positions}")

locate_substring()

¢ find() method: Returns index or -1

¢ index() method: Returns index or raises exception

e Multiple occurrences: Loop to find all positions

Mnemonic: "Find-Index-Exception-Multiple"

Question 5(a) [3 marks]

Define String. List out various string operations.

Answer:

String: Sequence of characters enclosed in quotes.

Operation Method
Concatenation +

Repetition *

Slicing [start:end]
Length len()

Case upper(), lower()

¢ Immutable: Strings cannot be changed after creation

e Indexing: Access individual characters

e Methods: Built-in functions for manipulation

Mnemonic: "Concat-Repeat-Slice-Length-Case"

No. 14 /18

Example

"Hello" + "World"
"Hi" * 3
"Hello"[1:4]
len("Hello")

"hello".upper()

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Question 5(b) [4 marks]

How can we identify whether an element is a member of a list or not? Explain with a suitable
example.

Answer:

Method Operator Returns

in elementin list True/False

notin element not in list True/False

count() list.count(element) Number of occurrences
Example:

fruits = ["apple", "banana", "orange", "mango"]

1

Using 'in' operator
if "apple" in fruits:

print("Apple is available")

Using 'not in' operator
if "grapes" not in fruits:

print("Grapes not available")

Using count() method
count = fruits.count("apple")
if count > O0:
print (f"Apple found {count} times")
e Boolean result: True if found, False otherwise
e Case sensitive: "Apple" = "apple"

e Efficiency: 'in' operator is most common

Mnemonic: "In-NotIn-Count for membership"

Question 5(c) [7 marks]

Write Python code that replaces a substring with another substring of a given string. Consider the
given string as 'Welcome to GTU' and replace the substring 'GTU' with 'Gujarat Technological
University'.

Answer:

Code:

def replace substring():

Given string

No. 15 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

original = "Welcome to GTU"
old_substring = "GTU"
new_substring = "Gujarat Technological University"

Method 1: Using replace()

resultl = original.replace(old substring, new substring)
print(f"Original: {original}")

print(f"Modified: {resultl}")

Method 2: Manual replacement
if old substring in original:
index = original.find(old_substring)
result2 = original[:index] + new_substring + original[index +
len(old_substring):]
print (f"Manual method: {result2}")

Method 3: Replace all occurrences
test_string = "GTU offers GTU degree from GTU"

result3 = test_string.replace("GTU", "Gujarat Technological University")

print(f"Multiple replacements: {result3}")

replace_substring()
Output:

Original: Welcome to GTU

Modified: Welcome to Gujarat Technological University

e replace() method: Built-in string function
e Slicing method: Manual string manipulation

¢ All occurrences: Replaces every instance

Mnemonic: "Find-Replace-Slice-All"

Question 5(a OR) [3 marks]

Define List. List out various list operations.
Answer:

List: Ordered collection of items that can be modified.

No. 16 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Operation Method Example

Add append(), insert() list.append(item)
Remove remove(), pop() list.remove(item)
Access [index] list[0]

Slice [start:end] list[1:3]

Sort sort() list.sort()

e Mutable: Lists can be changed after creation
¢ Indexed: Elements accessed by position

e Dynamic: Size can grow or shrink

Mnemonic: "Add-Remove-Access-Slice-Sort"

Question 5(b OR) [4 marks]

Write short note on String Slicing. Explain with suitable example.
Answer:

String Slicing: Extracting parts of string using [start & step].

Syntax Description Example

[start:] From start to end "Hello"[1:] — "ello"

[:end] From beginning to end "Hello"[:3] — "Hel"

[start:end] Specific range "Hello"[1:4] — "ell"

[::-1] Reverse string "Hello"[::-1] — "olleH"
Example:

text = "Python Programming"

print(text[0:6])
print(text[7:])

"Python"
#
print(text[:6]) # "Python"
#
#

"Programming"

print(text[::2])
print(text[::-1])

"Pto rgamn"

"gnimmargorP nohtyP"

¢ Negative indexing: -1 for last character

e Step parameter: Controls increment

Mnemonic: "Start-End-Step for slicing"

No. 17 /18

Python Programming (4311601) - Winter 2024 Solution by Milav Dabgar

Question 5(c OR) [7 marks]

Write Python code which counts the number of times the specified element appears in the list.
Answer:

Code:

def count element occurrences():
Create a sample list
numbers = [1, 2, 3, 2, 4, 2, 5, 2, 6]

element = int(input("Enter element to count: "))

Method 1: Using count() method
countl = numbers.count(element)

print (£"Using count(): {element} appears {countl} times")

Method 2: Manual counting
count2 = 0
for num in numbers:
if num == element:
count2 += 1

print(f"Manual count: {element} appears {count2} times")

Method 3: List comprehension
count3 = len([x for X in numbers if x == element])

print(f"List comprehension: {element} appears {count3} times")

Method 4: For any type of list

mixed list = [1, "hello", 3.14, "hello", True, "hello"]
element_str = input("Enter element to search in mixed list: ")
count4 = mixed list.count(element str)

print(f"In mixed list: '{element str}' appears {count4} times")

count_element_ occurrences()

count() method: Built-in list function

Manual iteration: Using loops for counting

List comprehension: Pythonic way of counting

Type flexibility: Works with any data type

Mnemonic: "Count-Manual-Comprehension-Flexible"

No. 18 /18

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

