Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Define problem solving and list out the steps of problem solving.

Answer:
Problem solving is a systematic approach to identify, analyze, and resolve challenges or issues using logical
thinking and structured methods.

Steps of Problem Solving:

Step Description

1. Problem Identification Clearly understand and define the problem
2. Problem Analysis Break down the problem into smaller parts
3. Solution Design Develop possible solutions or algorithms
4. Implementation Execute the chosen solution

5. Testing & Validation Verify the solution works correctly

6. Documentation Record the solution for future reference

Mnemonic: "l Always Design Implementation Tests Daily"

Question 1(b) [4 marks]

Define variable and mention rule for choosing names of variable.

Answer:
Avariable is a named storage location in memory that holds data values which can be changed during
program execution.

Variable Naming Rules:

Rule Description

Start Character Must begin with letter (a-z, A-Z) or underscore ()
Allowed Characters Can contain letters, digits (0-9), and underscores
Case Sensitive myVar and MyVar are different variables

No Keywords Cannot use Python reserved words (if, for, while)
No Spaces Use underscore instead of spaces

Descriptive Names Choose meaningful names (age, not x)

Mnemonic: "Start Alphabetically, Continue Carefully, Never Keywords"

No. 1/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Question 1(c) [7 marks]

Design a flowchart to find maximum number out of three given numbers.

Answer:

A flowchart shows the logical flow to find the maximum of three numbers using comparison operations.

max =

max =

Output:

End

max =

max =

Flowchart:
Yes—»
Ye
No—»
Start —> Input: num1, num2,
Yes—»
No
No—»
Key Points:

e Input: Three numbers (hum1, num2, num3)
e Process: Compare numbers using nested conditions

e Output: Maximum value among the three

Mnemonic: "Compare First Two, Then With Third"

Question 1(c OR) [7 marks]

Construct an algorithm which checks entered number is positive and greater than 5 or not.

Answer:
An algorithm to verify if a number is both positive and greater than 5.

Algorithm:

Algorithm: CheckPositiveGreaterThan5
Step 1: START
Step 2: INPUT number
Step 3: IF number > 0 AND number > 5 THEN
PRINT "Number is positive and greater than 5"
ELSE
PRINT "Number does not meet criteria"
END TIF
Step 4: END

Flowchart:

No. 2 /21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

= Print: Number is positive

number > 0 AND number >

N/

Print: Number does not

Key Conditions:

e Positive: number >0
e Greater than 5: number >5

e Combined: Both conditions must be true

Mnemonic: "Positive Plus Five"

Question 2(a) [3 marks]

Write a short note on arithmetic operators.

Answer:
Arithmetic operators perform mathematical calculations on numeric values in Python programming.

Arithmetic Operators Table:

Operator Name Example Result
+ Addition 5+3 8

- Subtraction 5-3 2

* Multiplication 5%3 15

/ Division 5/3 1.67

1/ Floor Division 5//3 1

% Modulus 5%3 2

k Exponentiation 5%3 125

Mnemonic: "Add Subtract Multiply Divide Floor Mod Power™"

Question 2(b) [4 marks]

Explain the need for continue and break statements.

No. 3/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Answer:
Continue and break statements control loop execution flow for efficient programming.

Statement Comparison:

Statement Purpose Action
break Exit loop completely Terminates entire loop
continue Skip current iteration Jumps to next iteration

Usage Examples:

e break: Exit when condition met (finding specific value)

e continue: Skip invalid data (negative numbers in positive list)
Benefits:

e Efficiency: Avoid unnecessary iterations
e Control: Better program flow management

e Clarity: Cleaner code logic

Mnemonic: "Break Exits, Continue Skips"

Question 2(c) [7 marks]

Create a program to check whether entered number is even or odd.

Answer:
A Python program using modulus operator to determine if a number is even or odd.

Python Code:

Program to check even or odd

number = int(input("Enter a number: "))

if number % 2 ==

print (f£"{number} is Even")
else:

print (f" {number} is 0dd")

Logic Explanation:

Condition Result Explanation
number % 2 == Even Divisible by 2, no remainder
number % 2 == Odd Not divisible by 2, remainder 1

No. 4 /21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Sample Output:

e |nput: 8 — Output: "8 is Even"

e Input: 7 — Output: "7 is Odd"

Mnemonic: "Modulus Zero Even, One Odd"

Question 2(a OR) [3 marks]

Summarize the comparison operators of python.

Answer:
Comparison operators compare values and return boolean results (True/False).

Comparison Operators Table:

Operator Name Example Result
== Equal to 5== True
1= Not equal to 51=3 True
> Greater than 5>3 True
< Less than 5<3 False
>= Greater than or equal 5>=5 True
<= Less than or equal 5<=3 False

Return Type: All operators return boolean values (True/False)

Mnemonic: "Equal Not Greater Less Greater-Equal Less-Equal”

Question 2(b OR) [4 marks]

Write short note on while loop.

Answer:
While loop repeatedly executes code block as long as condition remains true.

While Loop Structure:

No. 5/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Component Description

Initialization Set initial value before loop

Condition Boolean expression to test

Body Code to execute repeatedly

Update Modify variable to avoid infinite loop
Syntax:

while condition:
loop body
update statement

Characteristics:

e Pre-tested: Condition checked before execution
e Variable iterations: Unknown number of repetitions

e Control: Condition determines continuation

Mnemonic: "While Condition True, Execute Loop"

Question 2(c OR) [7 marks]

Create a program to read three numbers from the user and find the average of the numbers.

Answer:
A Python program to calculate average of three user-input numbers.

Python Code:

Program to find average of three numbers

numl = float(input("Enter first number: "))

num2 float(input("Enter second number: "))

num3 float(input("Enter third number: "))

average = (numl + num2 + num3) / 3

print (f"Average of {numl}, {num2}, {num3} is: {average:.2f}")

Calculation Process:

No. 6/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Step Operation

Input Read three numbers
Sum Add all three numbers
Divide Sum +3

Output Display formatted result

Sample Execution:
e |nput: 10, 20, 30
e Sum: 60
e Average: 20.00

Mnemonic: "Sum Three Divide Display"

Question 3(a) [3 marks]

Define control structures, List out control structures available in python.

Answer:

Control structures determine the execution flow and order of statements in a program.

Python Control Structures:

Type Structures

Sequential Normal flow

Selection if, if-else, elif

Iteration for, while

Jump break, continue, pass
Categories:

e Conditional: Decision making (if statements)
¢ Looping: Repetition (for/while loops)

e Branching: Flow control (break/continue)

Mnemonic: "Sequence Select Iterate Jump"

Question 3(b) [4 marks]

Purpose

Execute statements in order
Choose between alternatives
Repeat code blocks

Alter normal flow

Explain how to define and call user defined function by giving example.

Answer:

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

User-defined functions are custom blocks of reusable code that perform specific tasks.

Function Structure:

Component
Definition
Parameters
Body
Return

Call

Example Code:

Syntax

def function_name():

def func(param1, param2):

Indented code block
return value

function_name()

Function definition

def greet user(name):

message = f"Hello, {name}!"

return message

Function call

result = greet user("Python")

print(result)

Output: Hello, Python!

Mnemonic: "Define Parameters Body Return Call"

Question

Create a program to display the following patterns using loop concept

Answer:

A Python program using nested loops to create number patterns.

Python Code:

3(c) [7 marks]

Pattern printing program

for i in range(l, 6):

for j in

range(l, i + 1):

print(i, end="")

print()

Pattern Logic:

New line after each row

No. 8 /21

Purpose

Create function
Accept inputs
Function logic
Send result back

Execute function

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Row Iterations Output
1 1 time 1

2 2 times 22

3 3 times 333

4 4 times 4444

5 5 times 55555

Loop Structure:

e Outer loop: Controls rows (1 to 5)
¢ Inner loop: Prints current row number

e Pattern: Row number repeated row times

Mnemonic: "Outer Rows Inner Repeats"

Question 3(a OR) [3 marks]

Explain nested loop using suitable example.

Answer:
Nested loop is a loop inside another loop where inner loop completes all iterations for each outer loop
iteration.

Nested Loop Structure:

Component Description

Outer Loop Controls main iterations

Inner Loop Executes completely for each outer iteration
Execution Inner loop runs nxm times total

Example Code:

Nested loop example - Multiplication table
for i in range(l, 4): # Outer loop
for j in range(l, 4): # Inner loop
print (£"{i}x{j}={i*j}", end=" ")
print() # New line

Output Pattern:

No. 9/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

1x1=1 1x2=2 1x3=3
2x1=2 2x2=4 2x3=6
3x1=3 3x2=6 3x3=9

Mnemonic: "Loop Inside Loop"

Question 3(b OR) [4 marks]

Write short note on local and global scope of variables

Answer:
Variable scope determines where variables can be accessed in a program.

Scope Comparison:

Scope Type Definition Access Lifetime
Local Inside function Function only Function execution
Global Outside functions Entire program Program execution

Example Code:

global var = "I am global" # Global scope

def my_ function():
local_var = "I am local" # Local scope
global global var
print(global var) # Accessible

print(local_var) # Accessible

print(global_var) # Accessible

print(local var) # Error - not accessible

Key Points:

e Local: Function-specific variables
e Global: Program-wide variables

e Access: Local overrides global in functions

Mnemonic: "Local Limited, Global General"

Question 3(c OR) [7 marks]

Develop a user-defined function to find the factorial of a given number.

Answer:
A recursive function to calculate factorial of a positive integer.

No. 10 / 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Python Code:

def factorial(n):

Calculate factorial of n
if n == 0 or n == 1:

return 1
else:

return n * factorial(n - 1)

Test the function
number = int(input("Enter a number: "))
if number < 0:
print("Factorial not defined for negative numbers")
else:
result = factorial (number)

print (f"Factorial of {number} is {result}")

Factorial Logic:

Input Calculation Result
0 Base case 1

1 Base case 1

5 5x4x3x2x1 120

Function Features:

e Recursive: Function calls itself
e Base case: Stops recursion at n=0 or n=1

e Validation: Handles negative inputs

Mnemonic: "Multiply All Previous Numbers"

Question 4(a) [3 marks]

Explain math module with various functions

Answer:
Math module provides mathematical functions and constants for numerical computations.

Math Module Functions:

No. 11/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Function Purpose Example

math.sqrt() Square root math.sqrt(16) = 4.0

math.pow() Power calculation math.pow(2, 3) = 8.0

math.ceil() Round up math.ceil(4.3) =5

math.floor() Round down math.floor(4.7) =4

math.factorial() Factorial math.factorial(5) = 120
Usage:

import math
result = math.sqrt(25) # Returns 5.0

Mnemonic: "Square Power Ceiling Floor Factorial"

Question 4(b) [4 marks]

Discuss the following list functions: i. len() ii. sum() iii. sort() iv. index()

Answer:
Essential list functions for data manipulation and analysis.

List Functions Comparison:

Function Purpose Return Type Example

len() Count elements Integer len([1,2,3]) =3
sum() Add all numbers Number sum([1,2,3]) =6
sort() Arrange in order None (modifies list) list.sort()

index() Find element position Integer [1,2,3].index(2) = 1

Usage Notes:

¢ len(): Works with any sequence
e sum(): Only numeric lists
e sort(): Modifies original list

¢ index(): Returns first occurrence

Mnemonic: "Length Sum Sort Index"

Question 4(c) [7 marks]

No. 12 [21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Create a user-defined function to print the Fibonacci series of 0 to N numbers. (Where N is an
integer number and passed as an argument)

Answer:
A function to generate and display Fibonacci sequence up to N terms.

Python Code:

def fibonacci_series(n):
"""Print Fibonacci series of n terms"""
if n <= 0:
print("Please enter a positive number")

return

First two terms
a, b=20,1

if n ==
print (f"Fibonacci series: {a}")

return
print(f"Fibonacci series: {a}, {b}", end="")

Generate remaining terms

for i in range(2, n):
c=a+b
print(f", {c}", end="")
a, b =b, c

print() # New line

Test function

num = int(input("Enter number of terms: "))

fibonacci_ series(num)

Fibonacci Logic:

Term Value Calculation
1st 0 Given

2nd 1 Given

3rd 1 0+1

4th 2 1+1

5th 3 1+2

Mnemonic: "Add Previous Two Numbers"

No. 13 / 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Question 4(a OR) [3 marks]

Explain random module with various functions

Answer:
Random module generates random numbers and makes random selections for various applications.

Random Module Functions:

Function Purpose Example

random() Float 0.0to 1.0 random.random()

randint() Integer in range random.randint(1, 10)

choice() Random list element random.choice([1,2,3])

shuffle() Mix list order random.shuffle(list)

uniform() Float in range random.uniform(1.0, 5.0)
Usage:

import random

number = random.randint(l, 100)

Applications: Games, simulations, testing, cryptography

Mnemonic: "Random Range Choice Shuffle Uniform"

Question 4(b OR) [4 marks]

Build a python code to check whether given element is member of list or not.

Answer:
A Python program to verify if an element exists in a list using membership operator.

Python Code:

Check element membership in list
def check membership():

Sample list

numbers = [10, 20, 30, 40, 50]

Get element to search

element = int(input("Enter element to search: "))

Check membership
if element in numbers:
print(f"{element} is present in the list")

print (f"Position: {numbers.index(element)}")

No. 14 / 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

else:
print (f"{element} is not present in the list")

Call function

check_membership()

Membership Methods:

Method Syntax Returns
in operator element in list Boolean
not in operator element not in list Boolean
count() method list.count(element) Integer

Mnemonic: "In List True False"

Question 4(c OR) [7 marks]

Develop a user defined function that reverses the entered string words

Answer:
A function to reverse each word in a string while maintaining word positions.

Python Code:

def reverse string words(text):

Reverse each word in the string
Split string into words
words = text.split()

Reverse each word
reversed words = []
for word in words:
reversed word = word[::-1] # Slice notation for reversal

reversed_words.append(reversed_word)

Join words back

result = ".join(reversed_words)

return result

Test function

input string = input("Enter a string: ")
output = reverse_ string words(input string)
print (f"Input: \"{input string}\"")
print(f"Output: \"{output}\"")

Example with given input
test_input = "Hello IT"

No. 15 [21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

test output = reverse string words(test input)
print(f"Input: \"{test input}\"")
print(f"Output: \"{test output}\"") # Output: "olleH TI"

Process Steps:

Step Operation

1 Split into words

2 Reverse each word
3 Join with spaces

Mnemonic: "Split Reverse Join"

Question 5(a) [3 marks]

Explain given string methods: i. count() ii. strip() iii. replace()

Answer:
Essential string methods for text processing and manipulation.

String Methods Comparison:

Method Purpose Syntax

count() Count occurrences str.count(substring)
strip() Remove whitespace str.strip()

replace() Replace substring str.replace(old, new)

Return Values:

e count(): Integer (number of occurrences)
e strip(): New string (whitespace removed)

e replace(): New string (replacements made)

Mnemonic: "Count Strip Replace"

Question 5(b) [4 marks]

Explain how to traverse a string by giving example.

Answer:

Example
[llHe”OII, IIITII]
["O”eH”' IITllI]
"olleH TI"
Example

"hello".count("l") = 2
" text ".strip() = "text"

"hi".replace("i", "ello") = "hello"

String traversal means accessing each character in a string sequentially.

Traversal Methods:

No. 16 / 21

Method
Index-based
Direct iteration

Enumerate

Example Code:

text = "Python"

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Syntax Use Case

foriin range(len(str)) Need position

for char in string Just characters

for i, char in enumerate(str) Both index and character

Method 1: Direct iteration

for char in text:

print(char, end=" ") # P y t h on

Method 2: Index-based

for i in range(len(text)):

print(£"{i}:

{text[i]}")

Method 3: Enumerate

for index, character in enumerate(text):

print(f"Position {index}: {character}")

Mnemonic: "Direct Index Enumerate"

Question 5(c) [7 marks]

Develop programs to perform the following list operations:

Answer:

Two programs for essential list operations and analysis.

Program 1: Check Element Existence

def check element exists(lst, element):

nwouon

Check if element exists in list

(LTI}

if element in lst:

return True, lst.index(element)

else:

return False, -1

Test program 1

numbers = [10,

30, 45, 50]

search item = int(input("Enter element to search: "))

exists, position

if exists:

check_element_exists(numbers, search_item)

print(f"{search item} found at position {position}")

else:

No. 17 [21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

print(f"{search item} not found in list")
Program 2: Find Smallest and Largest

def find min max(lst):

Find smallest and largest elements
if not 1lst: # Empty list check

return None, None

smallest = min(lst)
largest = max(lst)

return smallest, largest

Test program 2
numbers = [15, 8, 23, 4, 16, 42]
min_val, max_val = find min max(numbers)
print(f"List: {numbers}")
print(f"Smallest: {min val}")
print(f"Largest: {max_val}")

Key Operations:
e Membership: Using 'in' operator
e Min/Max: Built-in functions

e Validation: Empty list handling

Mnemonic: "Search Find Compare"

Question 5(a OR) [3 marks]

Explain slicing of list with example.

Answer:

List slicing extracts specific portions of a list using index ranges.

Slicing Syntax:

Format Description

list[start:end] Elements from start to end-1

list[:end] From beginning to end-1

list[start:] From start to end

list[::step] Every step element
Example:

No. 18 / 21

Example
[1,2,3,41[1:31 = [2,3]
[1,2,3,41[:2] = [1,2]
[1,2,3,41[2:]1 = [3,4]

[1,2,3,41[::2]1 =[1,3]

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

numbers = [0, 1, 2, 3, 4, 5]

print(numbers[1l:4]) # [1, 2, 3]
print (numbers[:3]) # [0, 1, 2]
print (numbers[3:]) # [3, 4, 5]
print (numbers[::2]) # [0, 2, 4]

Mnemonic: "Start End Step"

Question 5(b OR) [4 marks]

Explain how to traverse a list by giving example.

Answer:
List traversal involves accessing each element in a list systematically.

Traversal Techniques:

Method Syntax Output Type
Value iteration for item in list Elements only
Index iteration foriin range(len(list)) Index access
Enumerate for i, item in enumerate(list) Index and value

Example Code:

fruits = ["apple", "banana", "orange"]

Method 1: Direct value access
print("vValues only:")
for fruit in fruits:

print(fruit)

Method 2: Index-based access

print("\nWith indices:")

for i in range(len(fruits)):
print(f"Index {i}: {fruits[i]}")

Method 3: Enumerate
print("\nUsing enumerate:")
for index, fruit in enumerate(fruits):

print(f"{index} -> {fruit}")

Use Cases:

e Value only: Simple processing
¢ Index access: Position-dependent operations

e Enumerate: Both index and value needed

No. 19/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Mnemonic: "Value Index Both"

Question 5(c OR) [7 marks]

Develop python code to create list of prime and non-prime numbers in range 1 to 50.

Answer:
A Python program to categorize numbers into prime and non-prime lists.

Python Code:

def is prime(n):

Check if a number is prime
if n < 2:

return False
for i in range(2, int(n**0.5) + 1):
if n & i ==

return False

return True

def categorize numbers(start, end):

Create lists of prime and non-prime numbers
prime numbers = []

non_prime numbers = []

for num in range(start, end + 1):
if is_prime(num):
prime numbers.append(num)
else:

non_prime numbers.append (num)
return prime numbers, non prime numbers

Generate lists for 1 to 50
primes, non primes = categorize numbers(1l, 50)

print ("Prime numbers (1-50):")

print (primes)

print(f"\nTotal prime numbers: {len(primes)}")
print("\nNon-prime numbers (1-50):")

print(non_primes)

print (£"\nTotal non-prime numbers: {len(non_primes)}")

Prime Logic:

No. 20/ 21

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

Number Type Condition Examples
Prime Only divisible by 1 and itself 2,3,57,11
Non-Prime Has other divisors 1,4,6,8,9

Algorithm Steps:

e Check divisibility from 2 to Jn
e Categorize based on prime test

e Store in appropriate lists

Mnemonic: "Check Divide Categorize Store"

No. 21/ 21

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

