Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Question 1(a) [3 marks]

Explain the steps involved in problem-solving.

Answer:

Table:
Step Description
Problem Understanding Read and understand the problem clearly
Analysis Break down the problem into smaller parts
Algorithm Design Create step-by-step solution approach
Implementation Code the solution using programming language
Testing Verify solution with different test cases
Documentation Document the solution for future reference

Key Points:

¢ Problem Definition: Clearly identify what needs to be solved
e Input/Output: Determine required inputs and expected outputs

e Logic Building: Create logical flow of solution

Mnemonic: "People Always Design Implementation Tests Daily"

Question 1(b) [4 marks]

Write features of Python.

Answer:

Table:
Feature Description
Simple Syntax Easy to read and write code
Interpreted No compilation needed, runs directly
Platform Independent Runs on Windows, Mac, Linux
Object-Oriented Supports classes and objects
Large Library Extensive built-in modules
Dynamic Typing No need to declare variable types

No. 1/ 21

Key Features:

¢ Free and Open Source: Available for everyone to use

e High-level Language: Close to human language

e Extensive Support: Large community and documentation

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Mnemonic: "Simple Interpreted Platform-independent Object-oriented Libraries Dynamic"

Question 1(c) [7 marks]

Draw a flowchart and write algorithm to calculate the factorial of a given number.

Answer:
Flowchart:
Start Input number n

Algorithm:

1. Start

2. Input number n

3.

4. Initialize fact=1,i=1

5. Whilei<=n, do:

6.
7.

Key Points:

Print fact

End

o fact=fact*i

i=i+1

&

e BaseCase:0!=1and1!=1

No—»

Initialize fact =1, i=1

If n <0, print "Invalid input" and go to step 8

e Validation: Check for negative numbers

e Loop Logic: Multiply all numbers from 1 ton

Mnemonic: "Input Validate Initialize Loop Print"

Question 1(c OR) [7 marks]

Explain relational and assighment operators with example.

No. 2 /21

Print - Invalid input

No———»

Print

End

Yes—»

fact = fact *

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Answer:

Relational Operators Table:

Operator Description

== Equal to

I= Not equal to

> Greater than

< Less than

>= Greater than or equal
<= Less than or equal

Assignment Operators Table:

Operator Description

= Simple assignment
+= Add and assign

-= Subtract and assign
*= Multiply and assign

/= Divide and assign
Code Example:

Relational operators
a, b =10, 5

print(a > b) # True
print(a == b) # False

Assignment operators
x = 10

X += 5 # x becomes 15

X *= 2 # X becomes 30

Mnemonic: "Compare Relations, Assign Values"

Question 2(a) [3 marks]

Example
5==5(True)
51=3(True)
7 >3 (True)
2 <8 (True)
5>=5(True)

4 <=6 (True)

Example

x=5
X+=3(X=%x+3)
X-=2(X=X-2)
X*¥=4 (x=x7*4)

X/=2(x=x/2)

Draw various symbols used for flowchart and write purpose of each symbol.

Answer:

No. 3/ 21

Flowchart Symbols Table:

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Symbol Name Purpose
Oval Terminal Start/End of program
Rectangle Process Processing operations
Diamond Decision Conditional statements
Parallelogram Input/Output Data input/output
Circle Connector Connect different parts
Arrow Flow line Direction of flow
ASCII Diagram:
(Start/End) [Process] < Decision >
/ Input/Output \ O Connector --—> Flow
Key Points:

e Standard Symbols: Universally recognized shapes
e Clear Flow: Arrows show program direction

e Logical Structure: Helps visualize program logic

Mnemonic: "Terminals Process Decisions Input Connectors Flow"

Question 2(b) [4 marks]

List out characteristics of good algorithm.

Answer:

Table:
Characteristic Description
Finite Must terminate after finite steps
Definite Each step clearly defined
Input Zero or more inputs specified
Output At least one output produced
Effective Steps must be simple and feasible
Unambiguous Each step has only one meaning

No. 4 /21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Key Characteristics:

e Correctness: Produces correct results for all valid inputs

e Efficiency: Uses minimum time and space resources

e Clarity: Easy to understand and implement

Mnemonic: "Finite Definite Input Output Effective Unambiguous"

Question 2(c) [7 marks]

Use proper data type to represent the following data values.

Answer:

Data Type Mapping Table:

Data Value

(1) Number of days in a week
(2) Resident of Gujarat or not
(3) Mobile number

(4) Bank account balance

(5) Volume of a sphere

(6) Perimeter of a square

(7) Name of the student

Code Example:

Data type examples
days = 7

is_resident = True
mobile = "9876543210"
balance = 15000.50
volume = 523.33
perimeter = 20.0

name = "Rahul"

Key Points:

e int: Whole numbers without

str: Text data in quotes

bool: True/False values only

Data Type

int

bool

str

float

float

float

str

int
bool
str
float
float
float
str

decimals

float: Numbers with decimal points

Mnemonic: "Integers Float Strings Booleans"

No. 5/ 21

Example

days = 7

is resident = True
mobile = "9876543210"
balance = 15000.50
volume = 523.33
perimeter = 20.0

name = "Rahul"

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Question 2(a OR) [3 marks]

Find the output of following code.

numl = 2+9*((3*12)-8)/10

print (numl)

Answer:

Step-by-step calculation:

numl = 2+9%((3%12)-8)/10

Step 1l: 3*12 =
Step 2: 36-8 =
Step 3: 9*28 =
Step 4: 252/10
Step 5: 2+25.2
Output: 27.2
Key Points:

36

28

252
25.2
27.2

e BODMAS Rule: Brackets, Orders, Division, Multiplication, Addition, Subtraction

e Operator Precedence: Parentheses first, then multiplication/division

e Result Type: Float due to division operation

Mnemonic: "Brackets Orders Division Multiplication Addition Subtraction"

Question 2(b OR) [4 marks]

List out the various types of operators used in Python.

Answer:

Python Operators Table:

Type
Arithmetic
Comparison
Logical
Assignment
Bitwise
Membership

Identity

Operators

+I -I *I /I %I **I //

==I !=I >I <I >:l <=
and, or, not
=, +=, -5, *:’ /=

&I |I /\I = <<I >>
in, not in

is, is not

No. 6/ 21

Example
5+ 3 =8
5 > 3 = True

True and False

= False

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Key Points:

e Arithmetic: Mathematical operations
e Comparison: Compare values and return boolean

e Logical: Combine boolean expressions

Mnemonic: "Arithmetic Comparison Logical Assignment Bitwise Membership Identity"

Question 2(c OR) [7 marks]

Write a program to find the sum and average of all the positive numbers entered by the user. As
soon as the user enters a negative number, stop taking in any further input from the user and
display the sum and average.

Answer:
Code:
Program to find sum and average of positive numbers

total sum = 0

count = 0
print("Enter positive numbers (negative to stop):")

while True:

num = float(input("Enter number: "))

if num < O:

break

total_sum += num

count += 1

if count > O0:
average = total_sum / count
print(f"Sum: {total_ sum}")
print (f"Average: {average}")
else:

print("No positive numbers entered")

Key Points:

e Loop Control: While loop with break statement
¢ Input Validation: Check for negative numbers

e Division by Zero: Handle case when no numbers entered

Mnemonic: "Input Loop Check Calculate Display"

Question 3(a) [3 marks]

No.7 /21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Explain while loop with example.
Answer:
While Loop Structure:

while condition:

statements

update condition
Example:

Print numbers 1 to 5
i=1
while i <= 5:
print(i)
i+=1
Key Points:
e Pre-tested Loop: Condition checked before execution
¢ Infinite Loop Risk: Condition must eventually become False

e Loop Variable: Must be updated inside loop

Mnemonic: "While Condition True Execute"

Question 3(b) [4 marks]

Write a program to find the sum of digits of an integer number, input by the user.
Answer:
Code:

Program to find sum of digits

num = int(input("Enter a number: "))

original num = num

digit _sum = 0
while num > 0:
digit = num % 10

digit_sum += digit

num = num // 10

print(f"Sum of digits of {original num} is {digit sum}")

Key Points:

e Modulo Operation: Extract last digit using %10

¢ Integer Division: Remove last digit using //10

No. 8 /21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

e Loop Until Zero: Continue until no digits remain

Mnemonic: "Extract Add Remove Repeat”

Question 3(c) [7 marks]

Write a program to print Armstrong numbers between 100 to 10000 using a user-defined function.
Answer:

Code:

def is_armstrong(num):

wouon nwun

Check if number is Armstrong number
original = num
num digits = len(str(num))

sum_powers = 0

while num > 0:
digit = num % 10
sum_powers += digit ** num digits
num //= 10

return sum_powers == original

def print armstrong range(start, end):

Print Armstrong numbers in given range

print (f"Armstrong numbers between {start} and {end}:")

for num in range(start, end + 1):
if is_armstrong(num):
print (num, end=" ")

print()

Main program
print armstrong range(100, 10000)

Key Points:

e Function Definition: def keyword to create functions
e Armstrong Logic: Sum of digits raised to power of number of digits

e Range Function: Generate numbers in specified range

Mnemonic: "Define Check Calculate Compare Print"

Question 3(a OR) [3 marks]

Write a Program to print following pattern.

No. 9/ 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

4 321
321
2
1

H N W s U,

Answer:

Code:

Pattern printing program
for i in range(5, 0, -1):
for j in range(i, 0, -1):
print(j, end=" ")
print()

Key Points:
¢ Nested Loops: Outer loop for rows, inner for columns

e Reverse Range: range(start, stop, -1) for decreasing

e Print Control: end="" for space, print() for newline

Mnemonic: "Outer Inner Reverse Print"

Question 3(b OR) [4 marks]

Explain nested if...else statement.
Answer:

Structure:

if conditionl:
if condition2:
statements
else:
statements
else:
if condition3:
statements
else:

statements

Example:

No. 10 / 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

marks = 85

if marks >= 50:
if marks >= 90:
grade = "A+"

elif marks >= 80:

grade = "A"
else:
grade = "B"
else:
grade = "F"

print (f"Grade: {grade}")

Key Points:
¢ Inner Conditions: if-else inside another if-else
e Multiple Levels: Can nest multiple levels deep

e Logical Flow: Inner conditions execute only if outer is true

Mnemonic: "Outer Inner Multiple Levels"

Question 3(c OR) [7 marks]

Write a program to enter n numbers in list and using statistics module find mean, median and
mode.

Answer:

Code:

import statistics

Input number of elements
n = int(input("Enter number of elements: "))

numbers = []

Input numbers
for i in range(n):
num = float(input(f"Enter number {i+1}: "))

numbers.append (num)

Calculate statistics
mean_val = statistics.mean(numbers)

median val = statistics.median(numbers)

try:
mode_val = statistics.mode(numbers)
except statistics.StatisticsError:

mode_val = "No unique mode"

No. 11/ 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Display results

print (f"Numbers: {numbers}")
print(f"Mean: {mean val}")
print(f"Median: {median_val}")

print(f"Mode: {mode val}")

Key Points:

e Statistics Module: Built-in module for statistical functions

e List Input: Store numbers in list for processing

e Exception Handling: Handle mode calculation errors

Mnemonic: "Import Input Calculate Display"

Question 4(a) [3 marks]

Differentiate between a for loop and a while loop in python.

Answer:

Comparison Table:

Feature For Loop

Purpose Known iterations

Syntax for var in sequence

Initialization Automatic

Update Automatic

Use Case [terate over collections
Examples:

For loop

for i in range(5):

print(i)
While loop
i=0
while i < 5:

print(i)
i+=1

Mnemonic: "For Known While Unknown"

Question 4(b) [4 marks]

Match the following.

No. 12 [21

While Loop
Unknown iterations
while condition
Manual

Manual

Repeat until condition

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Answer:
Correct Matching:

e A.If statement — 3. Used to conditionally execute a block of code based on a certain condition
e B. While loop — 1. Executes a block of code repeatedly as long as a certain condition is met

e C.Break statement — 5. Terminates the current loop and moves on to the next iteration

e D. Continue statement — 2. Skips the current iteration and moves on to the next one

Key Points:

¢ If Statement: Conditional execution
e While Loop: Repeated execution with condition
e Break: Exit loop completely

e Continue: Skip current iteration only

Mnemonic: "If Conditions While Repeats Break Exits Continue Skips"

Question 4(c) [7 marks]

Differentiate between following with the help of an example:
a) Argument and Parameter
b) Global and Local variable

Answer:

a) Argument vs Parameter:

def greet(name, age): # name, age are parameters

print(f"Hello {name}, you are {age} years old")

greet("Raj", 20) # "Raj", 20 are arguments
b) Global vs Local Variable:

x = 10 # Global variable

def my_ function():
y = 5 # Local variable
global x
x = 15 # Modifying global variable
print(f"Local y: {y}")
print (£"Global x: {x}")

my function()
print(f"Global x outside: {x}")

Comparison Table:

No. 13 / 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Type Scope Access Example
Parameter Function definition Receives values def func(param):
Argument Function call Passes values func (argument)
Global Entire program Everywhere = 10

Local Inside function Function only = 5 in function

Mnemonic: "Parameters Receive Arguments Pass Globals Everywhere Locals Function"

Question 4(a OR) [3 marks]

Find the output of following statements.
Answer:
Code Analysis:
import math
(i) print(math.ceil(-9.7)) # Output: -9
(ii) print(math.floor(-9.7)) # Output: -10
(iii) print(math.fabs(-12.3)) # Output: 12.3
Explanation:
e ceil(-9.7): Ceiling rounds up to nearest integer = -9
e floor(-9.7): Floor rounds down to nearest integer =-10

e fabs(-12.3): Absolute value removes negative sign = 12.3
Key Points:

e Math Module: Import required for mathematical functions
¢ Negative Numbers: Ceiling and floor work differently with negatives

e Absolute Value: Always returns positive value

Mnemonic: "Ceiling Up Floor Down Absolute Positive"

Question 4(b OR) [4 marks]

Write advantages of function.
Answer:

Advantages Table:

No. 14 / 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Advantage Description

Code Reusability Write once, use multiple times

Modularity Break complex problems into smaller parts
Easier Debugging Locate and fix errors easily

Code Organization Better structure and readability
Maintainability Easy to update and modify

Reduced Complexity Simplify complex operations

Key Benefits:

e Avoid Repetition: No need to write same code again
e Team Collaboration: Different people can work on different functions

e Testing: Each function can be tested independently

Mnemonic: "Reuse Modular Debug Organize Maintain Reduce"

Question 4(c OR) [7 marks]

Write a program to find the smallest and largest number in a given list without using in built
functions.

Answer:

Code:

Program to find smallest and largest without built-in functions

def find min max(numbers) :

[T} nun

Find minimum and maximum without built-in functions
if not numbers:

return None, None

smallest = numbers[0]

largest = numbers[0]

for num in numbers[l:]:
if num < smallest:
smallest = num
if num > largest:

largest = num
return smallest, largest
Input list

n = int(input("Enter number of elements: "))

numbers = []

No. 15 [21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

for i in range(n):
num = float(input(f"Enter number {i+1}: "))

numbers . append (num)

Find min and max

min_num, max_num = find min max(numbers)

print(f"List: {numbers}")
print(f"Smallest number: {min_num}")

print(f"Largest number: {max_num}")

Key Points:

e Manual Comparison: Use if conditions instead of min()/max()
e [|nitialize Variables: Start with first element

e Loop Through: Compare each element with current min/max

Mnemonic: "Initialize Compare Update Return”

Question 5(a) [3 marks]

Differentiate sort() and sorted() methods for list in python.

Answer:

Comparison Table:

Feature sort()
Return Type None (modifies original)
Original List Modified in-place
Usage list.sort()
Memory Efficient

Examples:

sort() method

listl = [3, 1, 4, 2]
listl.sort()

print(listl) # [1, 2, 3, 4]

sorted() function
list2 = [3, 1, 4, 2]

new_list = sorted(list2)

print(list2) # [3, 1, 4, 2] (unchanged)

print(new list) # [1, 2, 3, 4]

Mnemonic: "Sort Modifies Sorted Creates"

No. 16 / 21

sorted()

New sorted list
Unchanged
sorted(list)

Uses extra memory

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Question 5(b) [4 marks]

Explain different way of traversing a string in python with example.
Answer:
String Traversal Methods:
1. Using For Loop:
text = "Python"

for char in text:
print(char, end=" ") # Py t hon

2. Using Index:

text = "Python"
for i in range(len(text)):
print(text[i], end=" ") # P y t h on

3. Using While Loop:

text = "Python"

i=0

while i < len(text):
print(text[i], end=" ")
i+=1

4. Using Enumerate:

text = "Python"
for index, char in enumerate(text):
print(f"{index}:{char}", end=" ") # 0:P l:y 2:t 3:h 4:0 5:n

Mnemonic: "For Index While Enumerate"

Question 5(c) [7 marks]

Write output of following scripts.
Answer:

Output Results:

(1) s = "Hello, World!"
print(s[0:5]) # Output: Hello

(2) 1st = [1, 2, 3, 4, 5]
print(lst[2:4]) # Output: [3, 4]

No. 17 [21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

(3) s = "python"

print(len(s)) # Output: 6

(4) 1st = [5, 2, 3, 1, 8]

lst.sort() # 1lst becomes [1, 2, 3, 5, 8]

(5) sl = "hello"

s2 = "world"
print(sl + s2) # Output: helloworld

(6) 1st = [1, 2, 3, 4, 5]

print(sum(lst)) # Output: 15

(7) s = "python"

print(s[::-1]) # Output: nohtyp

Key Points:

Slicing: [start:end] extracts substring/sublist
String Length: len() returns character count
List Sorting: sort() modifies list in-place

String Concatenation: + operator joins strings
Sum Function: Adds all list elements

Reverse Slicing: [::-1] reverses sequence

Mnemonic: "Slice Length Sort Concatenate Sum Reverse"

Question 5(a OR) [3 marks]

Explain type conversion in python.

Answer:

Type Conversion Table:

Type Function Example

int() Convert to integer int("5") —5

float() Convert to float float("3.14") — 3.14

str() Convert to string str(25) — "25"

bool() Convert to boolean bool(1l) — True

list() Convert to list list("abc") — ['a','b','c']
Examples:

No. 18 / 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

Implicit conversion
X =5+ 3.2 # int + float = float (8.2)

Explicit conversion
num_str = "123"
num_int = int(num str) # "123" - 123

Key Points:

e Implicit: Python automatically converts
e Explicit: Programmer manually converts using functions

e Type Safety: Some conversions may raise errors

Mnemonic: "Implicit Automatic Explicit Manual"

Question 5(b OR) [4 marks]

Explain concatenation and repetition operation on string with example.
Answer:
String Operations:
1. Concatenation (+):
strl = "Hello"
str2 = "World"

result = strl + " " + str2
print(result) # Hello World

Multiple concatenation

name = "Python"
version = "3.9"
info = "Language: " + name + " Version: " + version

print(info) # Language: Python Version: 3.9

2. Repetition (*):

text = "Hi! "
repeated = text * 3
print(repeated) # Hi! Hi! Hi!

Pattern creation

pattern = "-" * 10
print(pattern) # —-————————-

Key Points:
e Concatenation: Joins strings together using +

e Repetition: Repeats string n times using *

No. 19/ 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

e Immutable: Original strings remain unchanged

Mnemonic: "Plus Joins Star Repeats"

Question 5(c OR) [7 marks]

Write a program to count and display the number of vowels, consonants, uppercase, lowercase
characters in a string.

Answer:

Code:

def analyze string(text):

Analyze string for different character types

vowels = "aeiouAEIOU"

vowel count = 0

consonant _count = 0

uppercase_count = 0

lowercase_count = 0

for char in text:
if char.isalpha(): # Check if character is alphabet
if char in vowels:
vowel count += 1
else:

consonant count += 1

if char.isupper():
uppercase_count += 1
elif char.islower():

lowercase_count += 1
return vowel_count, consonant_count, uppercase_count, lowercase_count

Input string

text = input("Enter a string: ")

Analyze string

vowels, consonants, uppercase, lowercase = analyze string(text)

Display results

print(f"String: '{text}'")

print (f"Vowels: {vowels}")

print (f"Consonants: {consonants}")
print (f"Uppercase: {uppercase}")
print (f"Lowercase: {lowercase}")

Key Points:

e Character Classification: Use isalpha(), isupper(), islower()

No. 20/ 21

Python Programming (4311601) - Summer 2023 Solution by Milav Dabgar

¢ Vowel Check: Compare with vowel string

® Loop Processing: Check each character individually

Mnemonic: "Check Classify Count Display"

No. 21/ 21

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

