Question 1(a) [3 marks]

What is Renewable energy? Explain its importance.

Answer:

Renewable energy is energy derived from natural sources that replenish themselves over time, such as solar, wind, hydro, biomass, and geothermal.

Table: Importance of Renewable Energy

Aspect	Benefit
Environmental	Reduces greenhouse gas emissions and pollution
Economic	Creates jobs and reduces energy costs long-term
Energy Security	Reduces dependence on fossil fuel imports
Sustainability	Inexhaustible energy sources for future generations

Key Points:

• Clean Energy: Zero carbon emissions during operation

• **Cost-effective**: Decreasing technology costs make it economical

• **Job Creation**: Growing industry providing employment opportunities

Mnemonic: "EEES" - Environmental protection, Economic benefits, Energy security, Sustainability

Question 1(b) [4 marks]

List the types of Electric Vehicles. Explain each in brief.

Answer:

Table: Types of Electric Vehicles

Туре	Full Form	Description
BEV	Battery Electric Vehicle	Fully electric, powered only by battery
HEV	Hybrid Electric Vehicle	Combines gasoline engine with electric motor
PHEV	Plug-in Hybrid Electric Vehicle	Can be charged from external power source
FCEV	Fuel Cell Electric Vehicle	Uses hydrogen fuel cells for power

Key Features:

• **BEV**: Zero emissions, requires charging stations

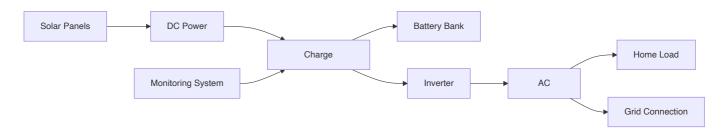
• HEV: Better fuel efficiency, self-charging through regenerative braking

PHEV: Dual power options, extended range

• FCEV: Quick refueling, water as only emission

Mnemonic: "Big Hybrid Plug Fuel" for BEV, HEV, PHEV, FCEV

Question 1(c) [7 marks]


What is the difference between solar energy and solar thermal energy? Discuss the block diagram of home solar rooftop system.

Answer:

Table: Solar Energy vs Solar Thermal Energy

Parameter	Solar Energy (PV)	Solar Thermal Energy
Conversion	Direct sunlight to electricity	Sunlight to heat energy
Technology	Photovoltaic cells	Solar collectors/panels
Output	Electrical energy	Thermal energy (hot water/steam)
Applications	Power generation, lighting	Water heating, space heating
Efficiency	15-22%	70-80%

Block Diagram: Home Solar Rooftop System

Key Components:

• Solar Panels: Convert sunlight to DC electricity

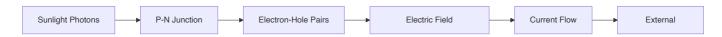
• Charge Controller: Regulates battery charging

• Inverter: Converts DC to AC power

Battery Bank: Stores excess energy

• **Grid Connection**: Two-way power flow

Mnemonic: "Solar Converts Battery Inverter Grid" for main components


Question 1(c OR) [7 marks]

What is solar photovoltaic effect? Explain principle of photovoltaic conversion.

Answer:

Solar photovoltaic effect is the generation of electric current when light falls on semiconductor materials.

Principle of Photovoltaic Conversion:

Working Process:

- Photon Absorption: Light photons hit semiconductor material
- Electron Excitation: Electrons gain energy and move to conduction band
- **P-N Junction**: Creates electric field separating charges
- Current Generation: Flow of electrons creates electrical current

Key Points:

- **Energy Conversion**: Light energy → Electrical energy
- Semiconductor Material: Usually silicon-based
- **Direct Conversion**: No moving parts required
- Quantum Effect: Based on photoelectric effect principle

Table: PV Cell Materials

Material	Efficiency	Cost	Application
Monocrystalline Silicon	18-22%	High	Residential
Polycrystalline Silicon	15-17%	Medium	Commercial
Thin Film	10-12%	Low	Large scale

Mnemonic: "Photons Push Electrons Producing Power"

Question 2(a) [3 marks]

What is nanotechnology? List any three applications based on nanotechnology.

Answer:

Nanotechnology is the science of manipulating matter at the molecular and atomic scale (1-100 nanometers).

Table: Nanotechnology Applications

Application	Description	Benefit
Medical	Drug delivery systems, cancer treatment	Targeted therapy
Electronics	Smaller, faster processors and memory	Higher performance
Energy	Solar cells, batteries, fuel cells	Better efficiency

Key Points:

• Scale: Works at nanometer level (10⁻⁹ meters)

• Precision: Atomic-level manipulation

• **Revolutionary**: Transforms multiple industries

Mnemonic: "Nano Makes Everything Better" - Medical, Electronics, Energy

Question 2(b) [4 marks]

Write short note on Tidal wave energy as important emerging renewable energy technology.

Answer:

Tidal wave energy harnesses the kinetic energy of ocean tides and waves to generate electricity.

Key Features:

• Predictable: Tides follow regular patterns

• High Density: Water is 800 times denser than air

• Consistent: Available day and night

• Clean: No emissions or fuel consumption

Table: Tidal Energy Systems

Туре	Method	Advantage
Tidal Barrage	Dam across estuary	High power output
Tidal Stream	Underwater turbines	Minimal environmental impact
Wave Energy	Surface wave motion	Abundant resource

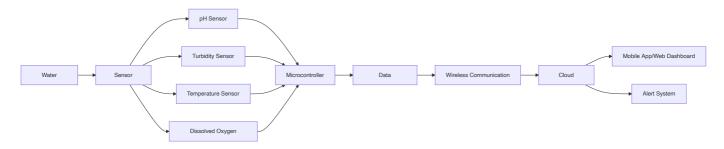
Applications:

• Coastal Power Generation: Remote coastal communities

• **Grid Integration**: Supplement to other renewable sources

• Island Nations: Ideal for maritime countries

Mnemonic: "Tides Provide Predictable Power"


Question 2(c) [7 marks]

What is smart water monitoring system? Explain the block diagram of Smart water Quality monitoring system.

Answer:

Smart water monitoring system uses IoT sensors to continuously monitor water quality parameters and provide real-time data for decision making.

Block Diagram: Smart Water Quality Monitoring System

Key Components:

• Sensors: Monitor pH, turbidity, temperature, dissolved oxygen

Microcontroller: Arduino/Raspberry Pi for data processing

• Communication: WiFi/GSM for data transmission

Cloud Platform: Data storage and analysis

• User Interface: Mobile app for monitoring

Benefits:

• Real-time Monitoring: Continuous water quality assessment

• Early Warning: Immediate alerts for contamination

• Data Analytics: Historical trends and predictions

• Cost Effective: Reduces manual testing costs

Table: Water Quality Parameters

Parameter	Normal Range	Sensor Type
рН	6.5-8.5	pH electrode
Turbidity	<1 NTU	Optical sensor
Temperature	15-25°C	Thermistor
Dissolved Oxygen	>5 mg/L	Electrochemical

Mnemonic: "Smart Sensors Send Signals Safely"

Question 2(a OR) [3 marks]

What is wearable technology? Name atleast two applications of wearable technology?

Answer:

Wearable technology refers to electronic devices that can be worn as clothing or accessories, incorporating smart sensors and connectivity.

Applications:

- Health Monitoring: Smartwatches tracking heart rate, steps, sleep patterns
- Fitness Tracking: Activity monitors measuring calories, distance, exercise
- Medical Devices: Continuous glucose monitors, blood pressure monitors
- Smart Glasses: Augmented reality displays, hands-free computing

Key Features:

• Portable: Lightweight and comfortable to wear

• Connected: Bluetooth/WiFi connectivity to smartphones

• Sensor-rich: Multiple sensors for data collection

Mnemonic: "Wearables Watch Wellness Wirelessly"

Question 2(b OR) [4 marks]

List the different types of solar cell. List different energy sources for Electric vehicle.

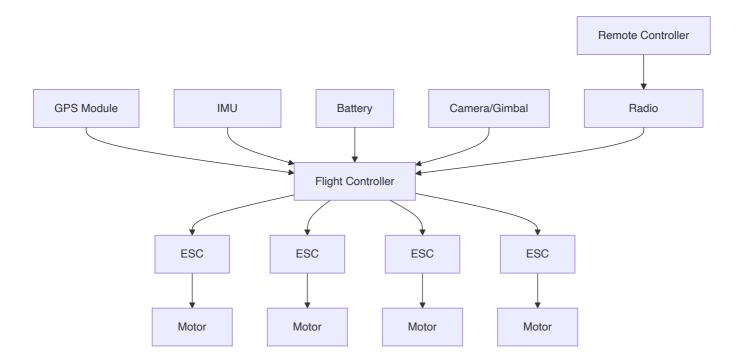
Answer:

Table: Types of Solar Cells

Туре	Material	Efficiency	Cost
Monocrystalline	Single crystal silicon	18-22%	High
Polycrystalline	Multi-crystal silicon	15-17%	Medium
Thin Film	Amorphous silicon	10-12%	Low
Cadmium Telluride	CdTe compound	16-18%	Medium

Table: Energy Sources for Electric Vehicles

Source	Description	Advantage
Battery	Lithium-ion cells	High energy density
Fuel Cell	Hydrogen conversion	Quick refueling
Ultracapacitor	Rapid charge/discharge	Fast charging
Regenerative Braking	Kinetic energy recovery	Energy efficiency


Mnemonic: "Solar: Mono Poly Thin Cadmium" / "EV: Battery Fuel Ultra Regen"

Question 2(c OR) [7 marks]

Describe the block diagram of a drone and its major components.

Answer:

Block Diagram: Drone System

Major Components:

Table: Drone Components

Component	Function	Importance
Flight Controller	Central processing unit	Brain of drone
ESC	Motor speed control	Precise motor control
Motors & Propellers	Generate thrust	Flight capability
Battery	Power supply	Flight duration
GPS	Position tracking	Navigation
IMU	Motion sensing	Stability control

Key Systems:

• **Propulsion System**: 4 motors with propellers for lift and control

• Control System: Flight controller with stabilization algorithms

• Navigation System: GPS and compass for positioning

• Power System: LiPo battery for electrical power

• Communication: Radio link with ground controller

Working Principle:

• Lift: Rotors create upward thrust

• Control: Varying rotor speeds controls movement

• Stability: Sensors maintain balance and orientation

Mnemonic: "Drones Fly Using Motors, Electronics, Sensors, Power"

Question 3(a) [3 marks]

What is IoT? List Key Components of IoT.

Answer:

IoT (Internet of Things) is a network of interconnected physical devices that collect and exchange data through the internet.

Table: Key Components of IoT

Component	Function	Example
Sensors	Data collection	Temperature, humidity sensors
Connectivity	Data transmission	WiFi, Bluetooth, GSM
Data Processing	Information analysis	Cloud computing
User Interface	Human interaction	Mobile apps, dashboards

Key Features:

• Interconnected: Devices communicate with each other

• Smart: Automated decision making

• Data-driven: Continuous monitoring and analysis

Mnemonic: "IoT Connects Smart Devices Using Internet"

Question 3(b) [4 marks]

Compare between organic and inorganic electronics.

Answer:

Table: Organic vs Inorganic Electronics

Parameter	Organic Electronics	Inorganic Electronics
Material	Carbon-based compounds	Silicon, metals
Manufacturing	Low temperature, printing	High temperature, clean room
Flexibility	Flexible, bendable	Rigid, brittle
Cost	Lower production cost	Higher production cost
Performance	Lower speed, efficiency	Higher speed, efficiency
Applications	Displays, solar cells	Processors, memory

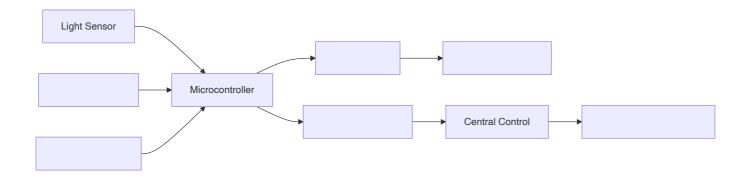
Key Differences:

• Processing: Organic uses solution-based processing

• Substrate: Organic can use plastic substrates

• **Durability**: Inorganic more stable and durable

• Innovation: Organic enables new form factors


Mnemonic: "Organic: Flexible, Cheap, Printable vs Inorganic: Fast, Stable, Expensive"

Question 3(c) [7 marks]

Draw block diagram of smart street light control and monitoring system. Discuss advantages and applications of AR/VR technology in industry.

Answer:

Block Diagram: Smart Street Light System

AR/VR Technology in Industry:

Table: AR/VR Applications

Industry	AR Application	VR Application
Manufacturing	Assembly instructions	Training simulations
Healthcare	Surgery assistance	Medical training
Education	Interactive learning	Virtual classrooms
Retail	Product visualization	Virtual showrooms

Advantages:

• Enhanced Training: Safe, repeatable learning environments

• Remote Collaboration: Virtual meetings and shared workspaces

• **Design Visualization**: 3D prototyping and modeling

• Maintenance Support: Real-time guidance and troubleshooting

Key Benefits:

• Cost Reduction: Lower training and travel costs

• Safety: Risk-free training environments

• Efficiency: Faster learning and problem-solving

• Innovation: New ways of human-computer interaction

Mnemonic: "AR/VR: Training, Design, Remote, Maintenance"

Question 3(a OR) [3 marks]

What is Smart System? List any four types of smart system.

Answer:

Smart System is an intelligent system that uses sensors, data processing, and automation to make decisions and adapt to changing conditions.

Table: Types of Smart Systems

Туре	Description	Example
Smart Home	Automated home control	Lighting, HVAC, security
Smart City	Urban infrastructure management	Traffic, utilities, waste
Smart Grid	Intelligent power distribution	Energy management
Smart Healthcare	Medical monitoring systems	Patient monitoring, diagnostics

Key Features:

• Automated: Self-operating capabilities

• Connected: Internet connectivity

• Adaptive: Learning and improving over time

Mnemonic: "Smart: Home, City, Grid, Health"

Question 3(b OR) [4 marks]

List the advantages and applications of organic electronics.

Answer:

Table: Advantages of Organic Electronics

Advantage	Description	Benefit
Flexibility	Bendable, stretchable	Wearable devices
Low Cost	Cheap manufacturing	Mass production
Large Area	Printing on large surfaces	Big displays
Low Temperature	Room temperature processing	Energy efficient

Applications:

• OLED Displays: Smartphones, TVs, lighting

• Organic Solar Cells: Flexible solar panels

• Organic Transistors: Flexible circuits

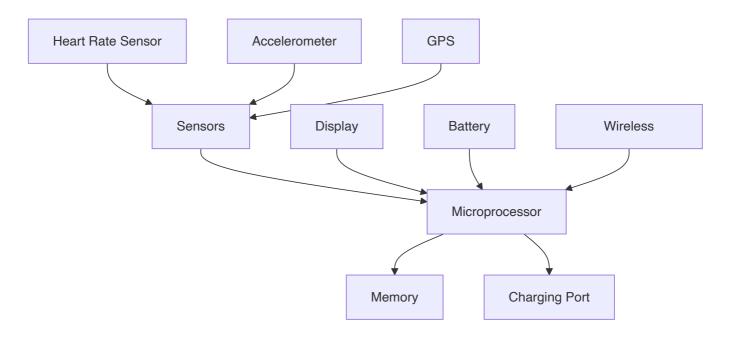
• Electronic Paper: E-readers, smart labels

Key Benefits:

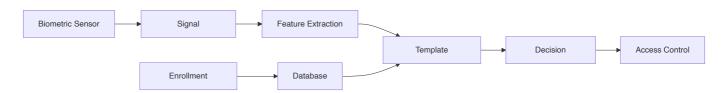
• Lightweight: Suitable for portable devices

• Transparent: See-through electronics

• Environmentally Friendly: Biodegradable materials


Mnemonic: "Organic: Flexible, Cheap, Large, Low-temp"

Question 3(c OR) [7 marks]


Draw basic block diagram of (i) wearable smart watch and (ii) biometric system.

Answer:

(i) Wearable Smart Watch Block Diagram:

(ii) Biometric System Block Diagram:

Smart Watch Components:

- **Sensors**: Heart rate, accelerometer, gyroscope
- Processor: ARM-based microcontroller
- **Display**: Touchscreen OLED/LCD
- Connectivity: Bluetooth, WiFi, cellular
- Power: Rechargeable lithium battery

Biometric System Components:

- Sensor Module: Captures biometric data
- Processing Unit: Analyzes and extracts features
- Database: Stores enrolled templates

• Matching Engine: Compares with stored data

• Decision Logic: Grants or denies access

Key Features:

• Authentication: Secure user identification

• Real-time: Instant processing and response

• Accuracy: High precision in identification

Mnemonic: "Smart Watch: Sense, Process, Display, Connect" / "Biometric: Capture, Process, Match, Decide"

Question 4(a) [3 marks]

Give full form of NOOBS, GPIO & LXDE in raspberry pi.

Answer:

Table: Raspberry Pi Acronyms

Acronym	Full Form	Purpose
NOOBS	New Out Of Box Software	Easy OS installation
GPIO	General Purpose Input Output	Hardware interface pins
LXDE	Lightweight X11 Desktop Environment	Desktop interface

Functions:

• NOOBS: Simplifies Raspberry Pi setup for beginners

• **GPIO**: 40-pin connector for external hardware

• LXDE: User-friendly graphical interface

Mnemonic: "New GPIO, Lightweight Experience"

Question 4(b) [4 marks]

Write a short note on OLED.

Answer:

OLED (Organic Light Emitting Diode) is a display technology using organic compounds that emit light when electric current is applied.

Key Features:

• Self-illuminating: No backlight required

• Thin Profile: Extremely thin displays

• **High Contrast**: True black pixels

• Wide Viewing Angle: No color distortion

Table: OLED vs LCD

Parameter	OLED	LCD
Backlight	Not required	Required
Contrast	Infinite	1000:1
Thickness	Ultra-thin	Thicker
Power	Lower (dark images)	Constant

Applications:

• Smartphones: Samsung, iPhone displays

• TVs: Premium television sets

• Automotive: Dashboard displays

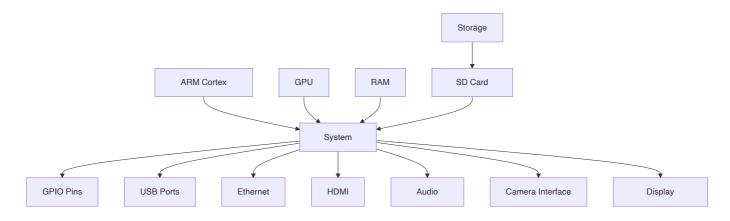
• Wearables: Smartwatch screens

Advantages:

• Energy Efficient: Lower power consumption

• Flexible: Can be made bendable

• Fast Response: No motion blur


Mnemonic: "OLED: Organic, Light, Emitting, Display"

Question 4(c) [7 marks]

Explain the architecture and block diagram of Raspberry Pi.

Answer:

Block Diagram: Raspberry Pi Architecture

Key Components:

Table: Raspberry Pi Components

Component	Specification	Function
СРИ	ARM Cortex-A72 Quad-core	Main processing
GPU	VideoCore VI	Graphics processing
RAM	4GB LPDDR4	System memory
Storage	MicroSD card	Operating system
GPIO	40-pin header	Hardware interface
Connectivity	WiFi, Bluetooth, Ethernet	Network access

Architecture Features:

• SoC Design: System on Chip integration

• Low Power: Energy-efficient ARM processor

• **Expandable**: GPIO pins for hardware projects

• Multimedia: Hardware acceleration for video

Interfaces:

• Video: HDMI output up to 4K

• Audio: 3.5mm jack and HDMI audio

• Camera: CSI camera connector

• **Display**: DSI display connector

Applications:

• Education: Learning programming and electronics

• **IoT Projects**: Home automation, sensors

• Media Center: Home entertainment system

• Robotics: Control systems for robots

Mnemonic: "Pi: Processor, Interfaces, Projects, Internet"

Question 4(a OR) [3 marks]

What is Raspberry Pi and its advantages and disadvantages?

Answer:

Raspberry Pi is a small, affordable single-board computer designed for education and hobbyist projects.

Table: Advantages and Disadvantages

Advantages	Disadvantages
Low Cost	Limited Performance
Small Size	No Built-in Storage
GPIO Pins	Requires SD Card
Linux Support	No Real-time OS
Educational	Power Supply Issues
Community Support	Limited RAM

Key Features:

• Affordable: Cost-effective computing solution

• Versatile: Multiple programming languages supported

• Open Source: Free software and documentation

Mnemonic: "Pi: Cheap, Small, Educational vs Limited, External, Power"

Question 4(b OR) [4 marks]

Write a short note on OFET.

Answer:

OFET (Organic Field Effect Transistor) is a transistor using organic semiconducting materials for switching and amplification.

Key Features:

• Organic Materials: Carbon-based semiconductors

• Low Temperature: Solution-based processing

• Flexible: Can be made on plastic substrates

• Large Area: Suitable for big displays

Table: OFET Structure

Component	Material	Function
Gate	Metal electrode	Controls current flow
Dielectric	Insulating layer	Isolates gate from channel
Source/Drain	Metal contacts	Current injection/collection
Channel	Organic semiconductor	Current conduction path

Applications:

• Flexible Displays: Bendable screens

• Smart Cards: RFID applications

• Sensors: Chemical and biological detection

• Logic Circuits: Simple digital circuits

Advantages:

• Mechanical Flexibility: Bendable electronics

• Low Cost: Cheap manufacturing

• Room Temperature: No high-temperature processing

Limitations:

• Lower Mobility: Slower than silicon

• Stability Issues: Degradation over time

• Limited Performance: Lower switching speeds

Mnemonic: "OFET: Organic, Flexible, Easy, Transistor"

Question 4(c OR) [7 marks]

List the types of Ports in Raspberry Pi. Discuss various operating systems of raspberry Pi.

Answer:

Table: Raspberry Pi Ports

Port Type	Quantity	Function
USB	4 ports	Connect peripherals
НОМІ	2 micro HDMI	Video output
GPIO	40 pins	Hardware interface
Ethernet	1 port	Wired network
Audio	3.5mm jack	Audio output
Power	USB-C	Power input
Camera	CSI connector	Camera module
Display	DSI connector	Display panel

Operating Systems for Raspberry Pi:

Table: Raspberry Pi Operating Systems

os	Туре	Best For
Raspberry Pi OS	Debian-based	General use, beginners
Ubuntu	Linux distribution	Server applications
LibreELEC	Media center	Home entertainment
RetroPie	Gaming	Retro gaming console
Windows 10 IoT	Microsoft OS	loT development
OSMC	Media center	Media streaming

Key Features of Raspberry Pi OS:

• Pre-installed Software: Programming tools, office suite

• **GPIO Support**: Hardware interfacing libraries

• Educational: Scratch, Python, Minecraft Pi

• Lightweight: Optimized for ARM processors

Installation Methods:

• NOOBS: Beginner-friendly installer

• Raspberry Pi Imager: Official imaging tool

• Direct Flash: Advanced users

Benefits:

• Variety: Multiple OS options for different purposes

• Community: Large user base and support

• **Updates**: Regular security and feature updates

• Customization: Open source flexibility

Mnemonic: "Pi Ports: USB, HDMI, GPIO, Ethernet" / "Pi OS: Official, Ubuntu, Media, Gaming"

Question 5(a) [3 marks]

Explain NumPy python library For Machine Learning.

Answer:

NumPy (Numerical Python) is a fundamental library for scientific computing, providing support for large multi-dimensional arrays and mathematical functions.

Key Features:

• N-dimensional Arrays: Efficient array operations

• Mathematical Functions: Linear algebra, Fourier transforms

• **Broadcasting**: Operations on arrays of different shapes

• Memory Efficient: Faster than Python lists

Table: NumPy in Machine Learning

Function	Usage	Example
Arrays	Data storage	np.array([1,2,3])
Linear Algebra	Matrix operations	np.dot(a,b)
Statistics	Data analysis	np.mean(), np.std()
Random	Data generation	np.random.rand()

Applications in ML:

• Data Preprocessing: Array manipulation and cleaning

• Feature Engineering: Mathematical transformations

• Model Implementation: Matrix operations for algorithms

Mnemonic: "NumPy: Numbers, Python, Arrays, Math"

Question 5(b) [4 marks]

What is organic photovoltaic cell (OPV)? Explain its working principle.

Answer:

OPV (Organic Photovoltaic) cell is a solar cell using organic semiconductors to convert light into electricity.

Working Principle:

Key Steps:

• **Light Absorption**: Organic molecules absorb photons

• Exciton Formation: Bound electron-hole pairs created

• Charge Separation: Excitons split at donor-acceptor interface

• Charge Transport: Electrons and holes move to electrodes

• Current Collection: External circuit completes the flow

Table: OPV Structure

Layer	Material	Function
Anode	ITO	Transparent electrode
Active Layer	Organic blend	Light absorption
Cathode	Aluminum	Back electrode
Buffer Layers	PEDOT:PSS	Improve efficiency

Advantages:

• Flexible: Can be made on plastic

• Lightweight: Portable applications

• Low Cost: Solution processing

• **Transparent**: See-through panels

Limitations:

• Lower Efficiency: 10-15% vs 20%+ silicon

• Stability: Degradation issues

• Lifetime: Shorter than inorganic cells

Mnemonic: "OPV: Organic, Photons, Voltage, Excitons"

Question 5(c) [7 marks]

List any four Machine learning tools. Discuss any one in brief.

Answer:

Table: Machine Learning Tools

Tool	Туре	Best For
TensorFlow	Deep learning framework	Neural networks
Scikit-learn	General ML library	Traditional algorithms
PyTorch	Deep learning framework	Research and development
Keras	High-level API	Rapid prototyping

Detailed Discussion: TensorFlow

TensorFlow is an open-source machine learning framework developed by Google for building and deploying ML models.

TensorFlow Features:

Table: TensorFlow Components

Component	Function	Benefit
Tensors	Multi-dimensional arrays	Data representation
Graphs	Computational flow	Model visualization
Sessions	Execution environment	Resource management
Estimators	High-level APIs	Easy model building

Architecture:

• Frontend: Python, C++, Java APIs

• Backend: CPU, GPU, TPU support

• Distributed: Multi-device training

• **Production**: Model serving and deployment

Applications:

• Image Recognition: Computer vision tasks

• Natural Language: Text processing and translation

• Recommendation Systems: Personalized content

• Time Series: Forecasting and prediction

Advantages:

• Scalability: From mobile to data center

• Flexibility: Research to production

• Community: Large ecosystem and support

• Visualization: TensorBoard for monitoring

Code Example:

```
import tensorflow as tf
model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])
```

Use Cases in Industry:

• Google: Search and ads optimization

• Healthcare: Medical image analysis

• Finance: Fraud detection systems

• Automotive: Autonomous vehicle development

Mnemonic: "TensorFlow: Tensors, Graphs, Scale, Deploy"

Question 5(a OR) [3 marks]

Explain Pandas python library For Machine Learning.

Answer:

Pandas is a Python library for data manipulation and analysis, providing data structures and tools for handling structured data.

Key Features:

• DataFrame: 2D labeled data structure

• Series: 1D labeled array

• **Data Cleaning**: Handle missing values, duplicates

• File I/O: Read/write CSV, Excel, JSON, SQL

Table: Pandas in Machine Learning

Function	Usage	Example
Data Loading	Import datasets	pd.read_csv()
Data Cleaning	Remove/fill missing	df.dropna()
Data Selection	Filter data	df[df['col'] > 5]
Aggregation	Group and summarize	df.groupby().mean()

Applications in ML:

• Data Preprocessing: Clean and prepare datasets

• Feature Engineering: Create new features from existing data

• Exploratory Analysis: Understand data patterns and relationships

Mnemonic: "Pandas: Python, Analysis, Data, Structure"

Question 5(b OR) [4 marks]

Explain the Differences between augmented reality and virtual reality.

Answer:

Table: AR vs VR Comparison

Parameter	Augmented Reality (AR)	Virtual Reality (VR)
Environment	Real world + digital overlay	Completely virtual world
Hardware	Smartphone, AR glasses	VR headset, controllers
Immersion	Partial immersion	Full immersion
Interaction	Real world + digital objects	Virtual objects only
Cost	Lower cost	Higher cost
Mobility	Mobile and portable	Stationary setup

Key Differences:

- Reality Mix: AR blends real and virtual, VR replaces reality
- User Experience: AR enhances reality, VR creates new reality
- Applications: AR for navigation, shopping; VR for gaming, training
- Hardware Requirements: AR needs less powerful hardware

Examples:

- AR: Pokemon Go, Snapchat filters, Google Maps navigation
- VR: Oculus games, virtual tours, flight simulators

Use Cases:

- AR: Retail, education, maintenance, marketing
- VR: Entertainment, training, therapy, design

Mnemonic: "AR: Augments Reality vs VR: Virtual Reality"

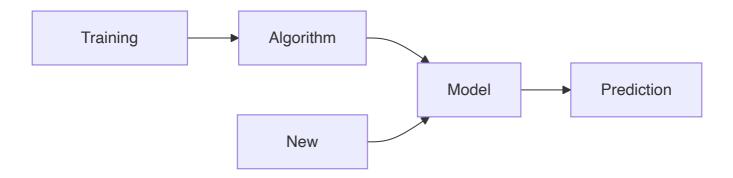
Question 5(c OR) [7 marks]

What is Machine learning? Discuss various types of Machine learning.

Answer:

Machine Learning is a subset of artificial intelligence that enables computers to learn and make decisions from data without being explicitly programmed.

Definition:


Machine learning uses algorithms to analyze data, identify patterns, and make predictions or decisions based on the learned patterns.

Types of Machine Learning:

Table: Types of Machine Learning

Туре	Description	Examples	Use Cases
Supervised	Learns from labeled data	Classification, Regression	Email spam, Price prediction
Unsupervised	Finds patterns in unlabeled data	Clustering, Association	Customer segmentation
Reinforcement	Learns through trial and error	Q-learning, Policy gradient	Game playing, Robotics

1. Supervised Learning:

Supervised Learning Types:

• Classification: Predicts categories (spam/not spam)

• **Regression**: Predicts continuous values (house prices)

2. Unsupervised Learning:

• Clustering: Groups similar data points

• **Association**: Finds relationships between variables

• Dimensionality Reduction: Reduces data complexity

3. Reinforcement Learning:

• Agent: Learning entity

• **Environment**: System being learned

• Reward: Feedback mechanism

• **Policy**: Strategy for actions

Applications by Type:

Table: ML Applications

Туре	Application	Industry
Supervised	Medical diagnosis	Healthcare
Unsupervised	Market basket analysis	Retail
Reinforcement	Autonomous driving	Automotive

Key Algorithms:

• Supervised: Linear Regression, Decision Trees, SVM, Neural Networks

• Unsupervised: K-Means, DBSCAN, PCA, Apriori

• Reinforcement: Q-Learning, Actor-Critic, Deep Q-Networks

Machine Learning Process:

1. Data Collection: Gather relevant datasets

2. Data Preprocessing: Clean and prepare data

3. Feature Selection: Choose important variables

4. Model Training: Train algorithm on data

5. Model Evaluation: Test performance

6. **Deployment**: Implement in production

Benefits:

• Automation: Reduces manual work

• Accuracy: Better than human performance in many tasks

• Scalability: Handles large datasets

• Adaptability: Improves with more data

Challenges:

• Data Quality: Requires clean, relevant data

• Overfitting: Model too specific to training data

• Interpretability: Black box nature of some algorithms

Computational Resources: Requires significant processing power

Real-world Examples:

• Netflix: Movie recommendations (supervised)

• **Amazon**: Customer segmentation (unsupervised)

• AlphaGo: Game playing (reinforcement)

Future Trends:

• Deep Learning: Neural networks with multiple layers

- AutoML: Automated machine learning pipelines
- Edge AI: ML on mobile and IoT devices
- Explainable AI: Making ML decisions interpretable

Mnemonic: "ML Types: Supervised teaches, Unsupervised discovers, Reinforcement rewards"