OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Question 1(a) [3 marks]

List any 6 applications of Python programming language.
Answer:

Table of Python Applications:

Application Area Description

Web Development Django, Flask frameworks
Data Science Analysis and visualization
Machine Learning Al model development
Desktop Applications GUI using Tkinter, PyQt
Game Development Pygame library
Automation Scripting and testing

Mnemonic: "Web Data Machine Desktop Game Auto"

Question 1(b) [4 marks]

List any 8 features of Python programming language.
Answer:

Table of Python Features:

Feature Description

Simple Syntax Easy to read and write

Interpreted No compilation needed
Object-Oriented Supports OOP concepts

Dynamic Typing Variables don't need type declaration
Cross-Platform Runs on multiple OS

Large Libraries Rich standard library

Open Source Free to use and modify

Interactive REPL environment

Mnemonic: "Simple Interpreted Object Dynamic Cross Large Open Interactive"

No. 1/ 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Question 1(c) [7 marks]

Explain working of for and while loops in Python.
Answer:
For Loop:

e Iteration: Repeats over sequences (lists, strings, ranges)
e Syntax: for variable in sequence:

e Automatic: Handles iteration automatically
While Loop:

e Condition-based: Continues while condition is true
e Manual control: Programmer controls iteration

e Risk: Can create infinite loops if condition never becomes false

Diagram:

Start

Initialize

Condition? ----No----> End
| Yes

Execute

Update

(loop back)
Code Example:

For loop
for i in range(5):

print(i)

While loop

i=0

while i < 5:
print(i)
i+=1

Mnemonic: "For Automatic, While Manual"

Question 1(c OR) [7 marks]

Explain working of break continue and pass statements in Python.

No. 2 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Answer:
Break Statement:

e Exit: Terminates the entire loop
e Usage: When specific condition is met

e Effect: Control moves to next statement after loop
Continue Statement:

e Skip: Skips current iteration only
e Usage: Skip specific values in iteration

o Effect: Moves to next iteration
Pass Statement:

e Placeholder: Does nothing, syntactic placeholder
e Usage: When syntax requires statement but no action needed

e Effect: No operation performed

Code Examples:

Break
for i in range(10):
if i ==
break

print(i) # prints 0,1,2,3,4

Continue
for i in range(5):
if i ==
continue

print(i) # prints 0,1,3,4
Pass

if True:

pass # placeholder

Mnemonic: "Break Exits, Continue Skips, Pass Waits"

Question 2(a) [3 marks]

Develop a Python program to increment each element of list by one.

Answer:

Code:

No. 3 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Method 1 - Using for loop

numbers = [1, 2, 3, 4, 5]

for i in range(len(numbers)):
numbers[i] += 1

print (numbers)

Method 2 - List comprehension
numbers = [1, 2, 3, 4, 5]
result = [Xx + 1 for x in numbers]

print(result)

Mnemonic: "Loop Index or Comprehension"

Question 2(b) [4 marks]

Develop a Python program to read three numbers from the user and find the average of the
numbers.

Answer:

Code:

Input three numbers

numl = float(input("Enter first number: "))
num2 = float(input("Enter second number: "))
num3 = float(input("Enter third number: "))

Calculate average

average = (numl + num2 + num3) / 3

Display result
print (f"Average is: {average}")
Key Points:

e Input: Use float() for decimal numbers
e Formula: Sum divided by count

e Output: Use f-string for formatting

Mnemonic: "Input Float, Sum Divide, Format Output”

Question 2(c) [7 marks]

Explain Python's list data type in detail.
Answer:
List Characteristics:

e Ordered: Elements maintain sequence

e Mutable: Can be modified after creation

No. 4 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

e Heterogeneous: Can store different data types

¢ Indexed: Access elements using index (0-based)

List Operations Table:

Operation Syntax Description

Creation list = [1,2,3] Create new list

Access 1ist[0] Get element by index
Append list.append(4) Add element at end
Insert list.insert(1,5) Add at specific position
Remove list.remove(2) Remove first occurrence
Pop list.pop() Remove and return last
Slice list[1:3] Get sublist

Code Example:

List creation and operations

fruits = ['apple', 'banana', 'orange']
fruits.append('mango')
fruits.insert(1l, 'grape')
print(fruits[0]) # apple
print(len(fruits)) # 5

Mnemonic: "Ordered Mutable Heterogeneous Indexed"

Question 2(a OR) [3 marks]

Develop a Python program to find sum of all elements in a list using for loop.
Answer:

Code:

No. 5/ 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Method 1 - Traditional for loop
numbers = [10, 20, 30, 40, 50]
total = 0
for num in numbers:

total += num
print(f"Sum is: {total}")

Method 2 - Using range and index

numbers = [10, 20, 30, 40, 50]

total = 0

for i in range(len(numbers)):
total += numbers[i]

print(f"Sum is: {totall}")

Mnemonic: "Initialize Zero, Loop Add, Print Total"

Question 2(b OR) [4 marks]

Develop a Python program to get input from user for principal, rate and no of years then calculate
and display simple interest from that.

Answer:
Code:

Get input from user

principal = float(input("Enter principal amount: "))

rate float(input("Enter rate of interest: "))

time = float(input("Enter time in years: "))

Calculate simple interest

simple interest = (principal * rate * time) / 100

Display results

print (f"Principal: {principal}")

print(f"Rate: {rate}s")

print(f"Time: {time} years")

print(f"Simple Interest: {simple interest}")

print(f"Total Amount: {principal + simple interest}")
Formula:

e Simple Interest =(P xR xT) /100

e Total Amount = Principal + Simple Interest

Mnemonic: "Principal Rate Time, Multiply Divide Hundred"

Question 2(c OR) [7 marks]

Explain Python's tuple data type in detail.

No. 6 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Answer:
Tuple Characteristics:

e Ordered: Elements maintain sequence

¢ Immutable: Cannot be modified after creation

e Heterogeneous: Can store different data types

¢ Indexed: Access using index (0-based)

Tuple Operations Table:

Operation Syntax

Creation tuple = (1,2,3)
Access tuple[0]

Count tuple.count(2)
Index tuple.index(3)
Slice tuple[1l:3]
Length len(tuple)
Concatenate tuplel + tuple2

Code Example:

Tuple creation and operations
coordinates = (10, 20, 30)
print(coordinates[0]) # 10
print(len(coordinates)) # 3

X, y, z = coordinates # tuple unpacking

new_tuple = coordinates + (40, 50)

Key Differences from List:

e Immutable: Cannot change elements
e Performance: Faster than lists

e Usage: For fixed data collections

Mnemonic: "Ordered Immutable Heterogeneous Indexed"

Question 3(a) [3 marks]

Explain any 3 random module methods.
Answer:

Random Module Methods Table:

Description

Create new tuple

Get element by index
Count occurrences
Find first index

Get sub-tuple

Get tuple size

Join tuples

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Method Syntax Description

random() random.random() Float between 0.0 to 1.0
randint() random.randint(1,10) Integer between given range
choice() random.choice(list) Random element from sequence

Code Example:

import random

Generate random float
print(random.random()) # 0.7234567

Generate random integer

print(random.randint (1, 10)) # 7

Choose random element
colors = ['red', 'blue', 'green']

print(random.choice(colors)) # blue

Mnemonic: "Random Float, Randint Integer, Choice Select"

Question 3(b) [4 marks]

Develop a Python program that asks the user for a string and prints out the location of each 'a' in
the string.

Answer:

Code:

Get string from user
text = input("Enter a string: ")
Find all positions of 'a'
positions = []
for i in range(len(text)):

if text[i].lower() == 'a':

positions.append(i)

Display results
if positions:

print(f"Letter 'a' found at positions: {positions}")
else:

print("Letter 'a' not found in the string")
Alternative method using enumerate

text = input("Enter a string: ")

for index, char in enumerate(text):

No. 8 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

if char.lower() == 'a':
print(f"'a' found at position {index}")
Key Points:

e Case-insensitive: Use .lower() to find both 'a' and'A'
¢ Index tracking: Use range or enumerate

e Output format: Clear position indication

Mnemonic: "Loop Index Check Append Print"

Question 3(c) [7 marks]

Explain Python's string data type in detail.
Answer:
String Characteristics:

e Immutable: Cannot be changed after creation
e Sequence: Ordered collection of characters
e Indexed: Access characters using index

e Unicode: Supports all languages and symbols

String Methods Table:

Method Example Description

upper() "hello".upper () Convert to uppercase
lower() "HELLO".lower () Convert to lowercase
strip() " hello ".strip() Remove whitespace
split() "a,b,c".split(",") Splitinto list
replace() "hello".replace("1l","x") Replace substring
find() "hello".find("e") Find substring index
join() ", ".join(["a","b"]) Join list elements

String Operations:

No.9 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

String creation

name = "Python Programming"

String indexing and slicing

print(name[0]) # P
print(name[0:6]) # Python
print(name[-11]) # g

String formatting
age = 25
message = f£f"I am {age} years old"

Key Features:

e Concatenation: Using + operator

e Repetition: Using * operator

e Membership: Using 'in' operator

e Formatting: f-strings, .format(), % formatting

Mnemonic: "Immutable Sequence Indexed Unicode"

Question 3(a OR) [3 marks]

Explain any 3 math module methods.
Answer:

Math Module Methods Table:

Method Syntax Description

sqrt() math.sqrt(16) Square root calculation
pow() math.pow(2,3) Power calculation
ceil() math.ceil(4.3) Round up to integer

Code Example:

import math

Square root
print (math.sqrt(25)) # 5.0

Power
print(math.pow(2, 3)) # 8.0

Ceiling
print (math.ceil(4.2)) # 5

No. 10 / 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Mnemonic: "Square Root, Power Up, Ceiling Round"

Question 3(b OR) [4 marks]

Develop a Python program to get a string from the user and count total no. of Vowels present in that
string.

Answer:
Code:

Get string from user

text = input("Enter a string: ")

Define vowels

vowels = "aeiouAEIOU"

Count vowels
vowel count = 0
for char in text:
if char in vowels:

vowel count += 1

Display result

print(f"Total vowels in '{text}': {vowel count}")

Alternative method using list comprehension
text = input("Enter a string: ")

vowels = "aeiouAEIOU"

count = sum(l for char in text if char in vowels)
print(f"Total vowels: {count}")

Key Points:

e Vowel definition: Include both cases
e Loop through: Each character in string

¢ Count logic: Check membership and increment

Mnemonic: "Define Vowels, Loop Check, Count Increment"

Question 3(c OR) [7 marks]

Explain Python's set data type in detail.
Answer:
Set Characteristics:

e Unordered: No fixed sequence of elements
e Mutable: Can add/remove elements

e Unique: No duplicate elements allowed

No. 11/ 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

e |terable: Can loop through elements

Set Operations Table:

Operation Syntax Description

Creation set = {1,2,3} Create new set

Add set.add(4) Add single element

Remove set.remove (2) Remove element (error if not found)
Discard set.discard(2) Remove element (no error)

Union setl | set2 Combine sets

Intersection setl & set2 Common elements

Difference setl - set2 Elements in set1 only

Set Mathematical Operations:

Set creation
A= {1, 2, 3, 4}
B={3, 4, 5, 6}

Set operations

print(A | B) # Union: {1,2,3,4,5,6}

print (A & B) # Intersection: {3,4}

print(A - B) # Difference: {1,2}

print(A © B) # Symmetric difference: {1,2,5,6}
Key Uses:

e Remove duplicates: From lists
e Mathematical operations: Union, intersection

e Membership testing: Fast lookup

Mnemonic: "Unordered Mutable Unique Iterable"

Question 4(a) [3 marks]

What is the class in Python. How is it different from an object?
Answer:

Class vs Object Comparison:

No. 12 [24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Aspect Class Object

Definition Blueprint or template Instance of class

Memory No memory allocated Memory allocated

Existence Logical entity Physical entity

Creation Using class keyword Using class constructor
Example:

Class definition (blueprint)
class Car:
def init (self, brand):

self.brand = brand

Object creation (instances)
carl = Car("Toyota") # Object 1
car2 = Car("Honda") # Object 2

Key Points:

e Class: Template defining properties and methods
® Object: Actual instance with specific values

e Relationship: One class, multiple objects

Mnemonic: "Class Blueprint, Object Instance"

Question 4(b) [4 marks]

Explain any four methods of dictionary data type of Python.
Answer:

Dictionary Methods Table:

Method Syntax Description
keys() dict.keys() Get all keys
values() dict.values() Get all values
items() dict.items() Get key-value pairs
get() dict.get('key') Get value safely

Code Example:

No. 13 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

student = {'name': 'John', 'age': 20, 'grade': 'A'}

Dictionary methods

print(student.keys()) # dict _keys(['name', 'age', 'grade'])
print(student.values()) # dict values(['John', 20, 'A'])
print(student.items()) # dict _items([('name', 'John'), ...1])

print(student.get('name')) # John

Mnemonic: "Keys Values Items Get"

Question 4(c) [7 marks]

Develop a Python program that defines a user-defined module for performing some tasks. Import
this module and use its functions.

Answer:

Module Creation (math_operations.py):

math operations.py
def add(a, b):

[T} nnn

Add two numbers

return a + b

def multiply(a, b):

Multiply two numbers

return a * b

def factorial(n):
"""Calculate factorial"""
if n <= 1:
return 1

return n * factorial(n - 1)

PI

3.14159

def circle area(radius):

nuon nnn

Calculate circle area

return PI * radius * radius

Main Program (main.py):

Import entire module

import math_operations

Use module functions

resultl = math operations.add(5, 3)
result2 = math operations.multiply(4, 6)
result3 = math operations.factorial(5)

area = math operations.circle_area(5)

No. 14 / 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

print(f"Addition: {resultl}")
print(f"Multiplication: {result2}")
print (f"Factorial: {result3}")

print(f"Circle Area: {area}")

Import specific functions
from math_operations import add, multiply
print(f"Direct call: {add(10, 20)}")

Key Points:

e Module creation: Separate .py file with functions
e Import methods: import module or from module import function

e Usage: Access using module.function() or direct function()

Mnemonic: "Create Import Use"

Question 4(a OR) [3 marks]

Define types of methods available in Python classes.
Answer:

Types of Methods Table:

Method Type Syntax Description

Instance Method def method(self): Access instance variables

Class Method @classmethod def method(cls): Access class variables

Static Method @staticmethod def method(): Independent of class/instance
Example:

class MyClass:

class_var = "Class Variable"

def instance method(self): # Instance method

return "Instance method"

@classmethod

def class method(cls): # Class method
return cls.class_var

@staticmethod

def static _method(): # Static method

return "Static method"

Mnemonic: "Instance Self, Class Cls, Static None"

No. 15/ 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Question 4(b OR) [4 marks]

Explain any four methods of string data type of Python.
Answer:

String Methods Table:

Method Syntax Description

startswith() str.startswith('pre') Check if starts with substring
endswith() str.endswith('suf') Check if ends with substring

isdigit() str.isdigit() Check if all digits

count() str.count('sub') Count substring occurrences

Code Example:

text = "Hello World 123"

String methods
print(text.startswith('Hello')) # True

print(text.endswith('123")) # True
print('123'.isdigit()) # True
print(text.count('l')) # 3

Mnemonic: "Start End Digit Count"

Question 4(c OR) [7 marks]

Develop a Python program to find factorial of a number using recursive user defined function.
Answer:

Code:

def factorial(n):
Calculate factorial using recursion
Base case: factorial(0) = 1, factorial(l) =1
Recursive case: factorial(n) = n * factorial(n-1)
Base case
if n == 0 or n ==

return 1
Recursive case

else:

return n * factorial(n - 1)

No. 16 / 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Main program
try:
num = int(input("Enter a number: "))

if num < O:
print ("Factorial not defined for negative numbers")

else:
result = factorial (num)
print (f"Factorial of {num} is {result}")

except ValueError:

print("Please enter a valid integer")

Test cases
print (f"Factorial of 5: {factorial(5)}") # 120
print(f"Factorial of 0: {factorial(0)}") # 1

Recursion Flow:

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1l)

return 1

Result: 5 * 4 * 3 * 2 * 1 = 120

Key Points:

e Base case: Stops recursion (n=0 or n=1)
e Recursive case: Function calls itself

e Error handling: Check for negative input

Mnemonic: "Base Stop, Recursive Call, Error Check"

Question 5(a) [3 marks]

Develop a python program to Implement single inheritance.
Answer:

Code:

Parent class

No. 17 [24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

class Animal:
def _ init_ (self, name):

self.name = name

def speak(self):
print(f"{self.name} makes a sound")

def eat(self):
print (f"{self.name} is eating")

Child class inheriting from Animal
class Dog(Animal):

def init_ (self, name, breed):

super().__init_(name) # Call parent constructor

self.breed = breed

def bark(self):
print (f"{self.name} is barking")

def speak(self): # Override parent method

print(f"{self.name} says Woof!")

Create objects and test

dog = Dog("Buddy", "Golden Retriever")
dog.speak() # Buddy says Woof!

dog.eat() # Buddy is eating (inherited)
dog.bark() # Buddy is barking (own method)

Mnemonic: "Parent Child Inherit Override"

Question 5(b) [4 marks]

Explain the significance of constructors in Python classes.

Answer:

Constructor Significance:

Aspect
Initialization
Setup
Memory

Validation

Constructor Types:

class Student:

Default constructor

Description

Automatically called when object is created
Initialize instance variables with values
Allocate memory for object attributes

Validate input parameters during creation

No. 18 / 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

def init (self):
self.name = "Unknown"

self.age = 0

Parameterized constructor

def init (self, name, age):
self.name = name
self.age = age
print (f"Student {name} created")

Constructor with default parameters
def init (self, name="Unknown", age=0):
self.name = name

self.age = age

Key Benefits:

e Automatic execution: No need to call manually
e Object state: Ensures proper initialization

e Code reusability: Common setup code in one place

Mnemonic: "Initialize Setup Memory Validate"

Question 5(c) [7 marks]

Develop a Python program to demonstrate method overriding using inheritance.
Answer:

Code:

Base class
class Shape:
def init (self, name):

self.name = name

def area(self):
print (f"Area calculation for {self.name}")

return 0

def display(self):
print (f"This is a {self.name}")

Derived class 1
class Rectangle(Shape):
def _ init_(self, length, width):
super().__init ("Rectangle")
self.length = length
self.width = width

Override area method

No. 19 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

def area(self):
area _value = self.length * self.width
print (f"Rectangle area: {area value}")

return area_value

Derived class 2
class Circle(Shape):
def init_ (self, radius):
super().__init_("Circle")

self.radius = radius

Override area method

def area(self):
area_value = 3.14 * self.radius * self.radius
print(f"Circle area: {area_value}")

return area_value

Override display method

def display(self):
super().display() # Call parent method
print (f"Radius: {self.radius}")

Test method overriding
shapes = |
Rectangle(5, 4),
Circle(3),
Shape("Generic Shape")

for shape in shapes:
shape.display()
shape.area()
print("-" * 20)

Method Overriding Diagram:

Shape (Base)

| -- area()
|-- display()
|
Rectangle Circle
| -- area() | -- area()
|-- display()
Key Points:

e Same method name: In parent and child classes
e Different implementation: Child class provides specific logic
e Runtime decision: Correct method called based on object type

e Super() usage: Access parent class method

No. 20/ 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Mnemonic: "Same Name Different Logic Runtime Decision"

Question 5(a OR) [3 marks]

Explain concept of data encapsulation in Python.
Answer:

Data Encapsulation:

Aspect Description

Definition Bundling data and methods together

Access Control Restrict direct access to internal data

Data Hiding Internal implementation hidden from outside
Interface Provide controlled access through methods

Implementation:

class BankAccount:
def _ init_(self, balance):

self. balance = balance # Private attribute

def deposit(self, amount): # Public method
if amount > 0:

self. balance += amount

def get balance(self): # Public method

return self. balance

def _ validate(self): # Private method

return self._ balance >= 0

Usage

account = BankAccount(1000)
account.deposit(500)
print(account.get balance()) # 1500

print(account._ balance) # Error - cannot access private

Mnemonic: "Bundle Data Hide Interface"

Question 5(b OR) [4 marks]

Explain concept of abstract classes in Python.
Answer:

Abstract Classes:

No. 21/ 24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Concept
Definition
Abstract Methods
Implementation

Purpose

Description

Class that cannot be instantiated directly
Methods declared but not implemented
Subclasses must implement abstract methods

Define common interface for related classes

Implementation using ABC:

from abc import ABC, abstractmethod

class Animal(ABC): # Abstract class
@abstractmethod
def make_ sound(self): # Abstract method

pass

def sleep(self): # Concrete method

print("Animal is sleeping")

class Dog(Animal):
def make sound(self): # Must implement

print("Woof!")

class Cat(Animal):
def make sound(self): # Must implement

print("Meow!")

Usage
dog = Dog()
dog.make sound() # Woof!

animal = Animal() # Error - cannot instantiate

Key Features:

e Cannot instantiate: Abstract class cannot create objects
¢ Force implementation: Subclasses must implement abstract methods

e Common interface: Ensures consistent method signatures

Mnemonic: "Cannot Instantiate Force Implementation Common Interface"

Question 5(c OR) [7 marks]

Develop a python program to Implement multiple inheritance.
Answer:

Code:

No. 22 [24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

First parent class
class Father:
def init_(self):
self.father name = "John"

print("Father constructor called")

def show father(self):
print(f"Father: {self.father name}")

def work(self):
print("Father works as Engineer")

Second parent class
class Mother:
def _ init (self):
self.mother_name = "Mary"

print ("Mother constructor called")

def show mother(self):
print(f"Mother: {self.mother name}")

def work(self):

print ("Mother works as Doctor")

Child class inheriting from both parents
class Child(Father, Mother):
def init (self):
Father._ init (self) # Call father's constructor
Mother. init (self) # Call mother's constructor
self.child name = "Alice"

print ("Child constructor called")

def show _child(self):
print(f"Child: {self.child name}")

def show family(self):
self.show_father()
self.show mother()
self.show child()

Create child object and test

child = child()

print("\nFamily Details:")

child.show_family()

print("\nMethod Resolution:")

child.work() # Calls Father's work method (MRO)

Check Method Resolution Order
print(£"\nMRO: {Child. mro_}")

Multiple Inheritance Diagram:

No. 23 /24

OOPS & Python Programming (4351108) - Winter 2023 Solution by Milav Dabgar

Father Mother
| |
| I
o oo +
|
Child
Key Points:

e Multiple parents: Child inherits from both Father and Mother
e Method Resolution Order (MRO): Determines which method is called
e Constructor calls: Explicitly call parent constructors

e Diamond problem: Python handles with MRO

Output:

Father constructor called
Mother constructor called

Child constructor called
Family Details:

Father: John

Mother: Mary

Child: Alice

Method Resolution:

Father works as Engineer

Mnemonic: "Multiple Parents MRO Constructor Diamond"

No. 24 / 24

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

