OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Explain for loop working in Python.
Answer:
For loop repeats code block for each item in sequence like list, tuple, or string.

Syntax Table:

Component Syntax Example

Basic for variable in sequence: for i in [1,2,3]:

Range for i in range(n): for i in range(5):

String for char in string: for ¢ in "hello":
Diagram:

Start --> Check if items left in sequence

\
Execute loop body

v
Move to next item --> Check if items left

v v

Items left? ----No----> End

Yes

v

Back to Execute loop body

e Iteration: Loop variable gets each value from sequence one by one
e Automatic: Python handles moving to next item automatically

¢ Flexible: Works with lists, strings, tuples, ranges

Mnemonic: "For Each Item, Execute Block"

Question 1(b) [4 marks]

Explain working of if-elif-else in Python.
Answer:

Multi-way decision structure that checks multiple conditions in sequence.

No.1/34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Structure Table:

Statement Purpose

if First condition

elif Alternative conditions
else Default case

Flow Diagram:

Start
|
\%
Check if condition
I
True/ \False
/ \
v v
Execute Check elif
if block condition
| |
v True/ \False
End / \
v v

Execute Check next elif

elif or else
block |
| v
v Execute
End else block
|
v
End

e Sequential: Checks conditions top to bottom
e Exclusive: Only one block executes

e Optional: elif and else are optional

Mnemonic: "If This, Else If That, Else Default"

Question 1(c) [7 marks]

Explain structure of a Python Program.

Answer:

Syntax
if conditionl:
elif condition2:

else:

Python program has organized structure with specific components in logical order.

No. 2 /34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Program Structure Table:

Component
Comments
Import
Constants
Functions
Classes

Main code

Program Architecture:

Purpose
Documentation
External modules
Fixed values
Reusable code
Objects blueprint

Program execution

Comments

1
|
Documentation |
|

Import Section

import modules

Constants &

Variables

Function

Definitions

Class

Definitions

Main Program

Execution

No. 3 /34

Example

This is comment
import math

PI = 3.14

def function name():
class ClassName:

if name ==

main :

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Modular: Each section has specific purpose

Readable: Clear organization helps understanding

Maintainable: Easy to modify and debug

Standard: Follows Python conventions

Simple Example:

Program to calculate area

import math
PI = 3.14159

def calculate area(radius):

return PI * radius * radius

Main execution
radius = float(input("Enter radius: "))
area = calculate area(radius)

print (f"Area = {area}")

Mnemonic: "Comment, Import, Constant, Function, Class, Main"

Question 1(c OR) [7 marks]

Explain features of Python Programming Language.
Answer:
Python has unique characteristics that make it popular for beginners and professionals.

Python Features Table:

Feature Description Benefit

Simple Easy syntax Quick learning
Interpreted No compilation Fast development
Object-Oriented Classes and objects Code reusability
Open Source Free to use No licensing cost
Cross-Platform Runs everywhere High portability

Feature Categories:

No. 4 /34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Python Features

v v v
Language Technical Community

Features Features Features

v v v
- Simple - Interpreted - Open Source
- Readable - Portable - Large Library
- Dynamic - Extensible - Active Support

e Beginner-Friendly: Simple syntax like English language
e Versatile: Used for web, Al, data science, automation

¢ Rich Libraries: Huge collection of pre-built modules

e Dynamic Typing: No need to declare variable types

¢ Interactive: Can test code line by line in interpreter

e High-Level: Handles memory management automatically

Code Example:

Simple Python syntax
name = "Python"
print(f"Hello, {name}!")

Mnemonic: "Simple, Interpreted, Object-Oriented, Open, Cross-platform"

Question 2(a) [3 marks]

Explain any 3 operations done on Strings.
Answer:
String operations manipulate and process text data in various ways.

String Operations Table:

Operation Method Example Result
Concatenation + "Hello" + "World" "HelloWorld"
Length len() len("Python") 6

Uppercase .upper () "hello" .upper/() "HELLO"

Operation Examples:

No.5/34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

text = "Python"

1. Concatenation

resultl = text + " Programming'
2. Find length

result2 = len(text)

3. Convert to uppercase

result3 = text.upper()

e Concatenation: Joins two or more strings together
e Length: Counts total characters in string

e Case Conversion: Changes letter cases (upper/lower)

Mnemonic: "Combine, Count, Convert"

Question 2(b) [4 marks]

Develop a Python program to convert temperature from Fahrenheit to Celsius unit using eq: C=(F-
32)/1.8

Answer:
Program converts temperature using mathematical formula with user input.

Algorithm Table:

Step Action Code

1 Get input fahrenheit = float(input())

2 Apply formula celsius = (fahrenheit - 32) / 1.8
3 Display result print(f"Celsius: {celsius}")

Complete Program:

Temperature conversion program

fahrenheit = float(input("Enter temperature in Fahrenheit: "))
celsius = (fahrenheit - 32) / 1.8

print (f"Temperature in Celsius: {celsius:.2f}")

Test Cases:
e |nput: 32°F — Output: 0.00°C
® |nput: 100°F — Output: 37.78°C
e User Input: Gets Fahrenheit temperature from user
e Formula Application: Uses given conversion equation

e Formatted Output: Shows result with decimal places

No. 6/ 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Mnemonic: "Input, Calculate, Output”

Question 2(c) [7 marks]

Explain in detail working of list data types in Python.

Answer:

List is ordered, mutable collection that stores multiple items in single variable.

List Characteristics Table:

Property
Ordered
Mutable
Indexed

Mixed Types

List Operations Diagram:

Description

Items have position
Can be changed
Access by position

Different data types

List: [10, 20, 30, 40]
o
Index: 0 1 2 S
Operations:
| T I
| Access | | Modify |
| 1ist[o] | | 1istfoj=s50 |
I [|
\4 v
"10" [50, 20, 30, 40]

Common List Methods:

Method Purpose
append() Add item at end
insert() Add at position
remove() Delete item
pop() Remove last item
len() Get length

No.7 /34

Example

(1, 2, 31

1list[0] = 10

list[0]

[1, "hello", 3.14]

Example
list.append(5)
list.insert(1,
list.remove(20)
list.pop()

len(list)

15)

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Example Code:

Creating and using lists
numbers = [1, 2, 3, 4, 5]

numbers.append(6) # Add 6 at end
numbers.insert (0, 0) # Add 0 at beginning
print (numbers[2]) # Access 3rd element
numbers.remove(3) # Remove value 3

e Dynamic Size: Can grow or shrink during execution
¢ Zero Indexing: First element at index 0O
e Slicing: Can extract portions using [start:end]

e Nested Lists: Can contain other lists

Mnemonic: "Ordered, Mutable, Indexed, Mixed"

Question 2(a OR) [3 marks]

Explain String formatting in Python.
Answer:
String formatting creates formatted strings by inserting values into templates.

Formatting Methods Table:

Method Syntax Example

f-strings f"text {variable}" f"Hello {name}"
format() "text {}".format(value) "Age: {}".format(25)
% operator "text %s" % value "Name: %s" % "John"

Example Usage:

name = "Alice"
age = 25
f-string formatting

message = f"Hello {name}, you are {age} years old"

e Placeholder: {} marks where values go
e Dynamic: Values inserted at runtime

e Readable: Makes code cleaner than concatenation

Mnemonic: "Format, Insert, Display"

No. 8 /34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Question 2(b OR) [4 marks]

Develop a Python program to identify whether the scanned number is even or odd and print an
appropriate message.

Answer:

Program checks if number is divisible by 2 to determine even or odd.

Logic Table:
Condition Result Message
number % 2 == Even "Number is even"
number % 2 !=0 Odd "Number is odd"

Complete Program:

Even/0dd checker program
number = int(input("Enter a number: "))
if number % 2 == 0:
print (f£"{number} is even")
else:
print(f" {number} is odd")
Test Cases:

® |nput: 4 — Output: "4 is even"

e |nput: 7 — Output: "7 is odd"

e Modulo Operator: % gives remainder after division
e Conditional Logic: if-else determines result

e User Feedback: Clear message about result

Mnemonic: "Input, Check Remainder, Display Result"

Question 2(c OR) [7 marks]

Explain in detail working of Set data types in Python.
Answer:
Set is unordered collection of unique items with no duplicate values allowed.

Set Characteristics Table:

No. 9/ 34

Property
Unordered
Unique
Mutable

Iterable

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Description

No fixed position
No duplicates
Can be modified

Can loop through

Set Operations Diagram:

Set A: {1,

\
\

v

2, 3} Set B: {3, 4, 5}

Set Operations

Union: {1, 2, 3, 4, 5}
Intersection: {3}
Difference: {1, 2}

Symmetric Diff: {1,2,4,5}

Set Methods Table:

Method
add()
update()
remove()
union()

intersection()

Example Code:

Purpose

Add single item
Add multiple items
Delete item
Combine sets

Common items

Creating and using sets

fruits = {"apple", "banana", "orange"}

fruits.add("mango")
fruits.update(["grape",
fruits.remove("banana")

print(len(fruits))

Add single item
"kiwi"]) # Add multiple
Remove item

Count items

Example

{1, 3, 2}
{1, 2, 3}
set.add(4)

for item in set:

Example

set.add(6)
set.update([7, 81])
set.remove(3)
setl.union(set2)

setl.intersection(set2)

e Automatic Deduplication: Removes duplicate values automatically

e Fast Membership: Quick checking if item exists

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

e Mathematical Operations: Union, intersection, difference

¢ No Indexing: Cannot access items by position

Mnemonic: "Unique, Unordered, Mutable, Mathematical"

Question 3(a) [3 marks]

Explain working of any 3 methods of math module.

Answer:

Math module provides mathematical functions for complex calculations.

Math Methods Table:

Method
math.sqrt()
math.pow()

math.ceil()

Usage Example:

import math

number = 16

resultl

result2

math.sqgrt (number)
math.pow(2,
result3 = math.ceil(7.2)

Purpose
Square root
Power calculation

Round up

Square root

4) # 2 to power 4

Round up to 8

e Precision: More accurate than basic operators

e Import Required: Must import math module first

e Return Values: Usually return float numbers

Mnemonic: "Square root, Power, Ceiling"

Question 3(b) [4 marks]

Develop a Python program to find sum of all elements in a list using for loop.

Answer:

Example
math.sqrt(16)
math.pow(2, 3)

math.ceil(4.3)

Program iterates through list and accumulates sum of all elements.

Algorithm Table:

No. 11/ 34

Result

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Step Action

1 Initialize sum

2 Loop through list
3 Add to sum

4 Display result

Complete Program:

Sum of list elements
numbers = [10, 20, 30,

total = 0

40, 50]

for element in numbers:

total += element

print(f"Sum of all elements: {total}")

Test Case:
e |nput:[1, 2, 3,4, 5] - Output: 15
e Accumulator: Variable stores running total

e Iteration: Loop visits each element once

Code
total = 0

for element in list:
total

+= element

print (total)

e Addition: Adds each element to running sum

Mnemonic: "Initialize, Loop, Add, Display"

Question 3(c) [7 marks]

Develop a Python program to check if two lists are having similar length. If yes then merge them

and create a dictionary from them.

Answer:

Program compares list lengths and creates dictionary if they match.

Logic Flow Table:

Step Condition

1 Check lengths
2 If equal

3 If not equal

Process Diagram:

Action
len(listl) == len(list2)
Merge and create dictionary

Display error message

No. 12 / 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Listl: [a, b, c] List2: [1, 2, 3]
| |
v 4
len(Listl) == len(List2) ?

Yes / \ No
/ \
\ \%
Create Dict Error
{a:1l, b:2, Message
c:3}

Complete Program:

Merge lists into dictionary
listl = ['name', 'age', 'city']
list2 = ['John', 25, 'Mumbai']

if len(listl) == len(list2):
Create dictionary using zip
result dict = dict(zip(listl, list2))
print("Dictionary created:", result dict)
else:

print("Lists have different lengths, cannot merge")

Expected Output:

Dictionary created: {'name': 'John', 'age': 25, 'city': 'Mumbai'}

Length Comparison: Ensures lists can be paired properly

zip() Function: Pairs elements from both lists

dict() Constructor: Creates dictionary from paired elements

Error Handling: Prevents incorrect pairing

Alternative Method:

Manual dictionary creation
result dict = {}
for i in range(len(listl)):
result dict[listl[i]] = list2[i]

Mnemonic: "Check Length, Zip, Create Dictionary"

Question 3(a OR) [3 marks]

Explain working of any 3 methods of statistics module.

No. 13/ 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Answer:
Statistics module provides functions for statistical calculations on numeric data.

Statistics Methods Table:

Method Purpose Example Result
statistics.mean() Average value mean([1,2,3,4,5]) 3.0
statistics.median() Middle value median([1,2,3,4,5]) 3
statistics.mode() Most frequent mode([1,1,2,31) 1

Usage Example:

import statistics
data = [10, 20, 30, 40, 50]
avg = statistics.mean(data) # Calculate average

mid = statistics.median(data) # Find middle value

e Data Analysis: Helps understand data patterns
e Built-in Functions: No need to write complex formulas

e Accurate Results: Handles edge cases properly

Mnemonic: "Mean, Median, Mode"

Question 3(c OR) [7 marks]

Develop a Python program to count the number of times a character appears in a given string using
a dictionary.

Answer:
Program creates dictionary where keys are characters and values are their counts.

Character Counting Algorithm:

Step Action Code

1 Initialize dictionary char count = {}

2 Loop through string for char in string:

3 Count occurrences char count[char] = char count.get(char, 0) + 1
4 Display results print(char count)

Counting Process:

No. 14 / 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

String: "hello"
I
\%

Loop through each character

| n e |1 |1 |o

Dictionary: {'h':1,

Complete Program:

Character frequency counter
text = input("Enter a string: ")

char_count = {}

for char in text:
if char in char_ count:
char count[char] += 1
else:

char count[char] =1
print("Character frequencies:")

for char, count in char count.items():

print(f"'{char}': {count}")

Alternative Method (More Pythonic):

Using get() method
text = "programming"

char count = {}

for char in text:

char_count[char] = char count.get(char, 0) + 1

print(char_count)

Example Output:

Input: "hello"
Output: {'h': 1, 'e': 1, '1': 2, 'o': 1}

Dictionary Keys: Each unique character becomes a key

Dictionary Values: Count of character occurrences

get() Method: Returns 0 if key doesn't exist, avoiding errors

Iteration: Processes each character in string once

No. 15/ 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Mnemonic: "Loop, Check, Count, Store"

Question 4(a) [3 marks]

Explain working of Python class and objects with example.

Answer:

Class is blueprint for creating objects. Objects are instances of classes.

Class-Object Relationship:

Concept Purpose

Class Template/Blueprint
Object Instance of class
Attributes Data in class
Methods Functions in class

Class Structure:

Class: Car

Attributes:
- color

- model

Methods:
- start()
- stop()

v

Object: my car = Car()

Example Code:

No. 16 / 34

Example

class Car:

my car = Car()
self.color = "red"

def start(self):

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

class Student:
def init (self, name, age):
self.name = name # Attribute

self.age = age # Attribute

def display(self): # Method

print (f"Name: {self.name}, Age: {self.age}")

Creating objects
studentl = Student("Alice", 20)
studentl.display()

e Encapsulation: Groups related data and functions together
e Reusability: One class can create multiple objects

e Organization: Better code structure and maintenance

Mnemonic: "Class Blueprint, Object Instance"

Question 4(b) [4 marks]

Develop a Python program to print all odd numbers in a list.

Answer:

Program filters list elements and displays only odd numbers.

Odd Number Check Table:

Number number % 2
1 1
2 0
3 1
4 0

Complete Program:

Print odd numbers from list
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print ("0Odd numbers in the list:")
for number in numbers:
if number % 2 != O0:

print (number, end=" ")

Alternative Methods:

No. 17 / 34

Result

Odd

Even

Odd

Even

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Method 2: List comprehension
odd numbers = [num for num in numbers if num % 2 != 0]

print(odd_numbers)

Method 3: Using filter
odd numbers = list(filter(lambda x: x % 2 != 0, numbers))

print(odd_numbers)
Expected Output:

Odd numbers in the list:
13579

e Modulo Operation: % operator finds remainder
e Condition Check: If remainder is not 0, number is odd

e Loop Iteration: Checks each number in list

Mnemonic: "Loop, Check Remainder, Print Odd"

Question 4(c) [7 marks]

Explain working of user defined functions in Python.
Answer:
User-defined functions are custom functions created by programmers to perform specific tasks.

Function Components Table:

Component Purpose Syntax

def keyword Function declaration def function name():
Parameters Input values def func(paraml, param2):
Body Function code Indented statements

return Output value return value

Function Structure:

def function name(parameters):

| | (- Input values
| L Function identifier

L Keyword to define function

Function Body (indented)

No. 18 / 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Local variables
Processing logic

Calculations

v

return result (optional)

Types of Functions:

Type Description Example

No parameters Takes no input def greet():
With parameters Takes input def add(a, b):
Return value Gives output return a + b
No return Performs action print("Hello")

Example Functions:

Function with no parameters
def greet():
print("Hello, World!")

Function with parameters and return value
def calculate area(length, width):
area = length * width

return area

Function with default parameters
def introduce(name, age=18):

print(f"My name is {name} and I am {age} years old")

Using functions

greet ()

result = calculate_ area(5, 3)
print(f"Area: {result}")
introduce("Alice", 25)

introduce("Bob") # Uses default age

Function Benefits:

e Reusability: Write once, use multiple times
e Modularity: Break complex problems into smaller parts
e Maintainability: Easy to update and debug

e Readability: Makes code more organized and understandable

No.19 /34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

e Testing: Can test individual functions separately
Variable Scope:

¢ Local Variables: Exist only inside function

¢ Global Variables: Accessible throughout program

e Parameters: Act as local variables

Mnemonic: "Define, Parameters, Body, Return"

Question 4(a OR) [3 marks]

Explain working constructors in Python.

Answer:

Constructor is special method that initializes objects when they are created.

Constructor Details Table:

Aspect Description

Method name Always init

Purpose Initialize object

Automatic call Called during object creation
Parameters Can accept arguments

Constructor Example:

class Student:
def init (self, name, age):
self.name = name
self.age = age
print("Student object created")

Object creation automatically calls constructor

studentl = Student("Alice", 20)

Syntax

def init (self):
Set initial values

obj = Class()

def init (self, param):

e Automatic Execution: Runs immediately when object is created

e [Initialization: Sets up object's initial state

e self Parameter: Refers to current object being created

Mnemonic: "Initialize, Automatic, Self"

Question 4(b OR) [4 marks]

No. 20/ 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Develop a Python program to find smallest number in a list without using min function.
Answer:
Program manually compares all elements to find the smallest value.

Finding Minimum Algorithm:

Step Action Code

1 Assume first is smallest smallest = list[O0]

2 Compare with others for num in list[1:]:
3 Update if smaller found if num < smallest:
4 Display result print(smallest)

Complete Program:

Find smallest number without min()

numbers = [45, 23, 67, 12, 89, 5, 34]
smallest = numbers[0] # Assume first is smallest
for i in range(l, len(numbers)):

if numbers[i] < smallest:

smallest = numbers[i]

print(f"Smallest number: {smallest}")
Alternative Method:

Using for loop with list elements
numbers = [45, 23, 67, 12, 89, 5, 34]
smallest = numbers[0]
for num in numbers[l:]:

if num < smallest:

smallest = num

print(f"Smallest number: {smallest}")

Expected Output:

Smallest number: 5

e Comparison Logic: Compare each element with current smallest
e Update Strategy: Replace smallest when smaller number found

e Linear Search: Check all elements once

No. 21/ 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Mnemonic: "Assume, Compare, Update, Display"

Question 4(c OR) [7 marks]

Explain working of user defined Modules in Python.
Answer:

User-defined modules are custom Python files containing functions, classes, and variables that can be
imported and used in other programs.

Module Components Table:

Component Purpose Example

Functions Reusable code blocks def calculate area():
Classes Object blueprints class Shape:
Variables Shared data PI = 3.14159
Constants Fixed values MAX SIZE = 100

Module Creation Process:

Step 1l: Create .py file

Step Write functions/classes

Step Save file

— w < — N <

Step Import in other programs

v
4
|
\
5

Step Use module functions

Example Module Creation:

File: math_operations.py

User-defined module
PI = 3.14159

def calculate circle_area(radius):

return PI * radius * radius

def calculate rectangle area(length, width):

return length * width

No. 22 /34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

class Calculator:
def add(self, a, b):

return a + b

def subtract(self, a, b):

return a - b

Using the Module:

Import Methods Table:

Method Syntax

Import entire module import math operations

Import specific function from math operations import calculate circle area
Import with alias import math operations as math_ops

Import all from math operations import *

Main Program:

main.py - Using the module
import math operations

Using module functions

radius = 5

area = math operations.calculate_circle area(radius)
print(f"Circle area: {area}")

Using module variables

print(£"PI value: {math operations.PI}")

Using module classes

calc = math operations.Calculator()
result = calc.add(10, 20)

print (f"Addition result: {result}")

Module Benefits:

e Code Reusability: Write once, use in multiple programs
e Organization: Keep related functions together

e Namespace: Avoid naming conflicts

e Maintainability: Easy to update and debug

e Collaboration: Share modules with other developers

Module Search Path:

1. Current directory

2. PYTHONPATH environment variable

No. 23 /34

Usage

math operations.calculate_circle_area(5)
calculate_circle_area(5)

math_ops.PI

calculate_circle_area(5)

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

3. Standard library directories

4. Site-packages directory
Best Practices:

e Use descriptive module names
e Include docstrings for documentation
e Keep related functionality together

e Avoid circular imports

Mnemonic: "Create File, Define Functions, Import, Use"

Question 5(a) [3 marks]

Explain single inheritance in Python with example.
Answer:
Single inheritance is when one class inherits properties and methods from exactly one parent class.

Inheritance Structure Table:

Component Role Example

Parent Class Base/Super class class Animal:

Child Class Derived/Sub class class Dog(Animal):
Inheritance class Child(Parent): class Dog(Animal):

Inheritance Diagram:

Parent Class: Animal

Attributes:
- name

- age

Methods:
- eat()
- sleep()

| inherits

\
Child Class: Dog

Inherited:

I
| - nhame, age

- eat(), sleep()

No. 24 / 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

|

| Own Methods:
| - bark()

|

Example Code:

Parent class
class Animal:
def init (self, name):

self.name = name

def eat(self):

print(f"{self.name} is eating")

Child class inheriting from Animal
class Dog(Animal):
def bark(self):

print(f"{self.name} is barking")

Using inheritance

my_dog = Dog("Buddy")

my_dog.eat () # Inherited method
my dog.bark() # Own method

e Code Reuse: Child class gets parent's functionality automatically

e Extension: Child can add new methods and attributes

¢ |s-a Relationship: Dog is-a Animal

Mnemonic: "One Parent, One Child"

Question 5(b) [4 marks]

Explain concept of abstraction in Python with its advantages.

Answer:

Abstraction hides complex implementation details and shows only essential features to the user.

Abstraction Concepts Table:

Concept Description

Abstract Class Cannot be instantiated
Abstract Method Must be implemented
Interface Defines method structure

Abstraction Implementation:

No. 25/ 34

Example
class Shape(ABC):
@abstractmethod

def area(self):

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

from abc import ABC, abstractmethod

Abstract class

class Shape(ABC):
@abstractmethod
def area(self):

pass

@abstractmethod
def perimeter(self):

pass

Concrete class
class Rectangle(Shape):
def init (self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

def perimeter(self):
return 2 * (self.length + self.width)

Advantages Table:

Advantage Description Benefit
Simplicity Hide complex details Easier to use
Security Hide internal implementation Data protection
Maintainability Change implementation without affecting users Flexible updates
Code Organization Clear structure Better design

e Hide Complexity: Users don't need to know internal workings
e Consistent Interface: All child classes follow same structure

¢ Force Implementation: Abstract methods must be defined in child classes

Mnemonic: "Hide Details, Show Interface"

Question 5(c) [7 marks]

Develop a Python program to demonstrate working of multiple and multi-level inheritances.
Answer:

Program shows both inheritance types: multiple (multiple parents) and multi-level (chain of inheritance).

No. 26 / 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Inheritance Types Comparison:

Type Structure
Multiple Child inherits from 2+ parents
Multi-level Grandparent — Parent — Child

Inheritance Hierarchy:

Multiple Inheritance:
Father Mother
\ /
\ /
Child

Multi-level Inheritance:

Animal

Complete Program:

Multi-level Inheritance Demo

print("=== Multi-level Inheritance ===")

class Animal:
def init_(self, name):

self.name = name

def eat(self):

print (f"{self.name} can eat")

class Mammal (Animal): # Inherits from Animal

def breathe(self):

print(f"{self.name} breathes air")

class Dog(Mammal):
def bark(self):
print (f"{self.name} can bark")

Using multi-level inheritance
my dog = Dog("Buddy")
my dog.eat()
my dog.breathe() # From Mammal (parent)
my_dog.bark() # Own method

No. 27 [34

Inherits from Mammal

From Animal (grandparent)

Example
class C(A, B):

class C(B): where class B(A):

(which inherits from Animal)

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

print("\n=== Multiple Inheritance ===")

class Father:
def father method(self):
print("Method from Father class")

class Mother:
def mother method(self):
print("Method from Mother class")

class Child(Father, Mother): # Inherits from both Father and Mother

def child method(self):
print("Method from Child class")

Using multiple inheritance

child = child()

child.father method() # From Father
child.mother method() # From Mother
child.child method() # Own method

Checking inheritance

print(£"\nChild inherits from Father: {issubclass(Child, Father)}")
print(f"Child inherits from Mother: {issubclass(Child, Mother)}")

Expected Output:

=== Multi-level Inheritance ===
Buddy can eat

Buddy breathes air

Buddy can bark

=== Multiple Inheritance ===
Method from Father class
Method from Mother class
Method from Child class

Child inherits from Father: True

Child inherits from Mother: True

Key Differences:

Aspect Multiple

Parents 2 or more direct parents
Syntax class C(A, B):
Inheritance Horizontal

Complexity Higher (diamond problem)

No. 28 /34

Multi-level

Single parent chain

class C(B): Where B(a):
Vertical

Lower

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Method Resolution Order (MRO):

e Multiple: Python follows left-to-right order

e Multi-level: Goes up the inheritance chain

Mnemonic: "Multiple Parents, Multi-level Chain"

Question 5(a OR) [3 marks]

Explain working of 3 types of methods in Python.

Answer:

Python classes have three types of methods based on how they access class data.

Method Types Table:

Method Type Decorator First Parameter
Instance Method None self
Class Method @classmethod cls
Static Method @staticmethod None
Example Code:
class Student:
school _name = "ABC School" # Class variable

def _ init_(self, name):
self.name = name # Instance variable
Instance method
def display info(self):
print(f"Student: {self.name}")

Class method

@classmethod

def get_school(cls):
return cls.school name

Static method

@staticmethod

def is_adult(age):
return age >= 18

Usage
student = Student("Alice")
student.display info() # Instance method

print(Student.get_school()) # Class method

No. 29 /34

Purpose
Access instance data
Access class data

Utility functions

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

print(Student.is_adult(20)) # Static method

¢ Instance Methods: Work with object-specific data using self

¢ Class Methods: Work with class-wide data using cl1s

e Static Methods: Independent utility functions

Mnemonic: "Instance Self, Class Cls, Static None"

Question 5(b OR) [4 marks]

Explain polymorphism through inheritance in Python.

Answer:

Polymorphism allows objects of different classes to be treated as objects of common base class, with each

implementing methods differently.

Polymorphism Concept Table:

Aspect Description

Same Interface Common method names
Different Implementation Each class has own version
Runtime Decision Method chosen during execution

Polymorphism Example:

Base class
class Shape:
def area(self):

pass

Different implementations
class Rectangle(Shape):
def _ init_(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

class Circle(Shape):
def _ init_(self, radius):

self.radius = radius

def area(self):

return 3.14 * self.radius * self.radius

No. 30 /34

Example
area() method
Rectangle vs Circle area

Dynamic binding

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Polymorphic behavior

shapes = [Rectangle(5, 3), Circle(4)]

for shape in shapes:

print(f"Area: {shape.area()}") # Same method, different results

Benefits:

¢ Flexibility: Same code works with different object types
e Extensibility: Easy to add new classes without changing existing code

e Maintainability: Changes in one class don't affect others

Mnemonic: "Same Name, Different Behavior"

Question 5(c OR) [7 marks]

Develop a Python program to demonstrate working of hybrid inheritance.
Answer:
Hybrid inheritance combines multiple and multi-level inheritance in single program structure.

Hybrid Inheritance Structure:

Animal (Base)

Hybrid Pet

Inheritance Types in Hybrid:

Level Type Classes

1 Single Animal - Mammal
2 Multiple Mammal — Dog, Cat
3 Multiple Dog, Cat — Pet

Complete Program:

Hybrid Inheritance Demonstration

No. 31/ 34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

print("=== Hybrid Inheritance Demo ===")

Base class (Level 1)
class Animal:
def _ init_(self, name):

self.name = name

def eat(self):
print(f"{self.name} can eat")

def sleep(self):

print (f"{self.name} can sleep")

Single inheritance (Level 2)
class Mammal (Animal):
def breathe(self):

print(f"{self.name} breathes air")

def give birth(self):

print (f"{self.name} gives birth to babies")

Multiple inheritance branches (Level 3)
class Dog(Mammal):
def bark(self):
print(f"{self.name} barks: Woof!")

def loyalty(self):

print (f"{self.name} is loyal to owner")

class Cat(Mammal):
def meow(self):

print(f"{self.name} meows: Meow!")

def independence(self):

print(f"{self.name} is independent")

Hybrid class - Multiple inheritance (Level 4)
class HybridPet(Dog, Cat):
def _ init (self, name, breed):
super()._ init__ (name)

self.breed = breed

def play(self):
print (f"{self.name} loves to play")

def show _info(self):
print (f"Name: {self.name}, Breed: {self.breed}")

Creating and using hybrid inheritance

print("\n--- Creating Hybrid Pet ---")
pet = HybridPet("Buddy", "Labrador-Persian Mix")

No. 32 /34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

print("\n--- Methods from Animal (Great-grandparent) —---")
pet.eat()
pet.sleep()

print("\n--- Methods from Mammal (Grandparent) —---")
pet.breathe()
pet.give birth()

print("\n--- Methods from Dog (Parent 1) ---")
pet.bark()
pet.loyalty()

print("\n--- Methods from Cat (Parent 2) ---")
pet.meow()

pet.independence()

print("\n--- Own Methods ---")

pet.play()
pet.show_info()

print("\n--- Inheritance Chain ---")
print (£"MRO (Method Resolution Order): {HybridPet. mro_}")

Checking inheritance relationships

print(£"\nIs HybridPet subclass of Animal? {issubclass(HybridPet, Animal)}")
print(f"Is HybridPet subclass of Dog? {issubclass(HybridPet, Dog)}")

print (f"Is HybridPet subclass of Cat? {issubclass(HybridPet, Cat)}")

Expected Output:

=== Hybrid Inheritance Demo ===
-—— Creating Hybrid Pet ---

-—- Methods from Animal (Great-grandparent) ---
Buddy can eat
Buddy can sleep

--- Methods from Mammal (Grandparent) ---
Buddy breathes air
Buddy gives birth to babies

--- Methods from Dog (Parent 1) ---
Buddy barks: Woof!

Buddy is loyal to owner

—-—- Methods from Cat (Parent 2) ---
Buddy meows: Meow!

Buddy is independent

-—— Own Methods ---

No. 33 /34

OOPS & Python Programming (4351108) - Summer 2024 Solution by Milav Dabgar

Buddy loves to play

Name: Buddy, Breed: Labrador-Persian Mix

——— Inheritance Chain ---

MRO (Method Resolution Order): (<class '_ _main__.HybridPet'>, <class '__main__.Dog'>,

<class '_main__.Cat'>, <class '_main_ .Mammal'>, <class '__main__.Animal'>, <class

'object'>)

Is HybridPet subclass of Animal? True
Is HybridPet subclass of Dog? True
Is HybridPet subclass of Cat? True

Key Features of Hybrid Inheritance:

e Complex Structure: Combines different inheritance types

¢ Method Resolution Order: Python follows specific order for method lookup

e Diamond Problem: Handled automatically by Python's MRO

¢ Flexibility: Access to methods from multiple parent classes
Advantages:

¢ Rich Functionality: Inherits from multiple sources

e Code Reuse: Maximum utilization of existing code

e Relationship Modeling: Represents complex real-world relationships
Challenges:

e Complexity: Harder to understand and maintain

¢ Name Conflicts: Multiple parents may have same method names

e Memory Usage: Objects carry more overhead

Mnemonic: "Hybrid Combines All Types"

No. 34 /34

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

