Question 1(a) [3 marks]

Draw TIFR register and write its full name.

Answer:

TIFR Register Diagram:

Full Name: Timer/Counter Interrupt Flag Register

• TOV0: Timer0 Overflow Flag

• OCFO: TimerO Output Compare Flag

• TOV1: Timer1 Overflow Flag

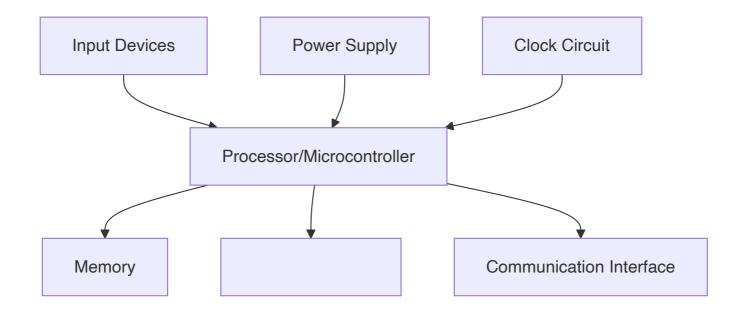
Mnemonic: "Timer Interrupts Flag Register"

Question 1(b) [4 marks]

Discuss data memory of ATmega32.

Answer:

Memory Type	Size	Address Range	Purpose
General Purpose Registers	32 bytes	0x00-0x1F	R0-R31 registers
I/O Memory	64 bytes	0x20-0x5F	Control registers
Internal SRAM	2048 bytes	0x60-0x85F	Variable storage


- General Purpose Registers: Used for arithmetic operations and temporary storage
- I/O Memory: Contains peripheral control and status registers
- Internal SRAM: Used for stack, variables, and dynamic memory allocation

Mnemonic: "General I/O SRAM Memory"

Question 1(c) [7 marks]

Draw and explain general block diagram of embedded system.

Answer:

Component	Function
Processor	Controls entire system operation
Memory	Stores program and data
Input Devices	Sensors, switches, keyboards
Output Devices	LEDs, displays, motors
Communication	UART, SPI, I2C interfaces

- Real-time Operation: System responds to inputs within defined time limits
- **Dedicated Function**: Designed for specific applications
- Resource Constraints: Limited memory, power, and processing capability

Mnemonic: "Processor Memory Input Output Communication"

Question 1(c OR) [7 marks]

Define real time operating system and explain its characteristics.

Answer:

Definition: Real Time Operating System (RTOS) is an operating system that guarantees response within specified time constraints for critical tasks.

Characteristic	Description
Deterministic	Predictable response times
Multitasking	Multiple tasks execution
Priority-based	High priority tasks first
Minimal Latency	Fast interrupt response

- Hard Real-time: Missing deadline causes system failure
- Soft Real-time: Performance degrades if deadline missed
- Task Scheduling: Preemptive priority-based scheduling ensures critical tasks run first

Mnemonic: "Deterministic Multitasking Priority Minimal"

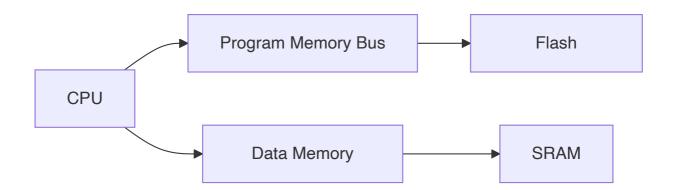
Question 2(a) [3 marks]

Write Criteria for choosing microcontroller for embedded system.

Answer:

Criteria	Importance
Processing Speed	Match application requirements
Memory Size	Sufficient ROM/RAM
I/O Pins	Adequate peripheral interfaces
Power Consumption	Battery life consideration
Cost	Budget constraints
Development Tools	Compiler, debugger availability

Mnemonic: "Speed Memory I/O Power Cost Tools"


Question 2(b) [4 marks]

Discuss Harvard Architecture in the AVR.

Answer:

Harvard Architecture Features:

Feature	Description
Separate Buses	Program and data have independent buses
Simultaneous Access	Can fetch instruction and access data simultaneously
Different Memory Types	Flash for program, SRAM for data

- Advantage: Higher performance due to parallel access
- **16-bit Instructions**: Most instructions execute in single clock cycle

Mnemonic: "Separate Simultaneous Different Performance"

Question 2(c) [7 marks]

Discuss different ways of connecting clock sources to the AVR.

Answer:

Clock Source	Frequency Range	Application
External Crystal	1-16 MHz	High accuracy applications
External RC	1-8 MHz	Cost-effective solution
Internal RC	1-8 MHz	Default, no external components
External Clock	Up to 16 MHz	Synchronized systems

Clock Selection via Fuse Bits:

CKSEL3:0 bits determine clock source CKDIV8 bit divides clock by 8 SUT1:0 bits set startup time

- Crystal Oscillator: Most stable, requires external crystal and capacitors
- RC Oscillator: Less accurate but cheaper
- Internal Oscillator: Factory calibrated, temperature dependent

Mnemonic: "Crystal RC Internal External"

Question 2(a OR) [3 marks]

Write size of code ROM, SRAM and EEPROM, Number of I/O pins, ADC and Timers for ATmega32.

Answer:

Specification	ATmega32
Flash ROM	32 KB
SRAM	2 KB
EEPROM	1 KB
I/O Pins	32 pins
ADC Channels	8 channels
Timers	3 timers

Mnemonic: "32K Flash 2K SRAM 1K EEPROM 32 I/O 8 ADC 3 Timers"

Question 2(b OR) [4 marks]

Draw ATmega32 pin diagram and write function of Vcc, AVcc and Aref pin.

Answer:

Pin Functions:

Pin	Function
Vcc	Main power supply (+5V)
AVcc	Analog power supply for ADC
Aref	ADC reference voltage

• Vcc: Supplies power to digital circuits

• AVcc: Separate supply for ADC to reduce noise

• Aref: External reference for ADC conversion

Mnemonic: "Vcc Digital AVcc Analog Aref Reference"

Question 2(c OR) [7 marks]

Explain AVR status register in detail.

Answer:

SREG (Status Register) Bits:

Bit	Name	Function
7	1	Global Interrupt Enable
6	Т	Bit Copy Storage
5	Н	Half Carry Flag
4	S	Sign Flag
3	V	Overflow Flag
2	N	Negative Flag
1	Z	Zero Flag
0	С	Carry Flag

- I Flag: Controls global interrupt enable/disable
- Arithmetic Flags: C, Z, N, V, S, H updated after ALU operations
- T Flag: Used by BLD and BST instructions for bit manipulation

Mnemonic: "I Transfer Half Sign oVerflow Negative Zero Carry"

Question 3(a) [3 marks]

Explain RESET circuit for the AVR microcontroller.

Answer:

Reset Sources:

Reset Source	Description
Power-on Reset	When power is applied
External Reset	Through RESET pin
Brown-out Reset	When voltage drops
Watchdog Reset	Watchdog timer overflow

• Reset Duration: Minimum 2 clock cycles

• Reset Vector: Program starts from address 0x0000

Mnemonic: "Power External Brown-out Watchdog"

Question 3(b) [4 marks]

List I/O registers associated with EEPROM. Write programming steps to write data on EEPROM.

Answer:

EEPROM Registers:

Register	Function
EEAR	EEPROM Address Register
EEDR	EEPROM Data Register
EECR	EEPROM Control Register

Programming Steps:

- 1. Wait for previous write to complete (check EEWE bit)
- 2. Set address in EEAR register
- 3. Set data in EEDR register
- 4. Set EEMWE bit in EECR
- 5. Set EEWE bit within 4 clock cycles

Mnemonic: "Wait Address Data Master-Write Enable-Write"

Question 3(c) [7 marks]

Draw and explain TCCR0 register in detail.

Answer:

TCCR0 (Timer/Counter0 Control Register):

Bit	Name	Function
7	FOC0	Force Output Compare
6,3	WGM01,WGM00	Waveform Generation Mode
5,4	COM01,COM00	Compare Output Mode
2,1,0	CS02,CS01,CS00	Clock Select

+	+	-+	-+	-+	-+	-+	-+
'	•	'				•	CS00
•	•	•	•	•	•	1	•

Clock Select Options:

• 000: No clock (Timer stopped)

• 001: clk/1 (No prescaling)

• 010: clk/8, 011: clk/64

• 100: clk/256, 101: clk/1024

Mnemonic: "Force Waveform Compare Clock Select"

Question 3(a OR) [3 marks]

List registers associated with Timer 1.

Answer:

Timer1 Registers:

Register	Function
TCCR1A	Timer1 Control Register A
TCCR1B	Timer1 Control Register B
TCNT1H/L	Timer1 Counter Register
OCR1AH/L	Output Compare Register A
OCR1BH/L	Output Compare Register B
ICR1H/L	Input Capture Register

Mnemonic: "Control Counter Output-Compare Input-Capture"

Question 3(b OR) [4 marks]

Write an AVR C program to store 'G' into location 0x005F of EEPROM.

Answer:

```
#include <avr/io.h>
#include <avr/eeprom.h>
void eeprom_write_byte_custom(uint16_t addr, uint8_t data)
   while(EECR & (1<<EEWE)); // Wait for previous write</pre>
                             // Set address
   EEAR = addr;
   EEDR = data;
                            // Set data
   EECR = (1 << EEMWE);
                          // Master write enable
   EECR = (1 << EEWE);
                            // Write enable
}
int main()
   eeprom write byte custom(0x005F, 'G');
   return 0;
}
```

Program Steps:

- Check EEWE bit for completion
- Load address 0x005F into EEAR
- Load 'G' (ASCII 71) into EEDR
- Enable master write, then write enable

Mnemonic: "Wait Address Data Master Write"

Question 3(c OR) [7 marks]

Write a C program to toggle only the PORTB.4 bit continuously every 70 μ s. Use Timer0, Normal mode, and 1:8 prescaler to create the delay. Assume XTAL = 8 MHz.

Answer:

Calculation:

- Clock = 8MHz/8 = 1MHz
- For 70µs: Count = 70 cycles
- Initial value = 256-70 = 186

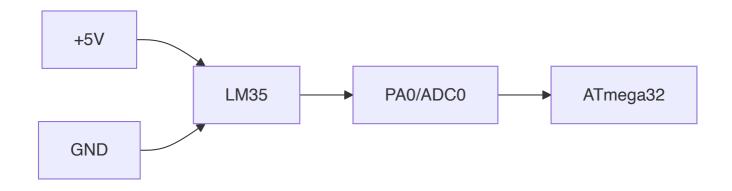
Mnemonic: "Direction Control Count Wait Clear Toggle"

Question 4(a) [3 marks]

Write an AVR C program to monitor bit 5 of port C. If it is HIGH, send 55H to Port B; otherwise, send AAH to Port B.

Answer:

Program Logic:


- Configure PC5 as input, Port B as output
- Continuously check PC5 status
- Output 0x55 or 0xAA based on input

Mnemonic: "Direction Check Output"

Question 4(b) [4 marks]

Draw and explain interfacing of LM35 with ATmega32.

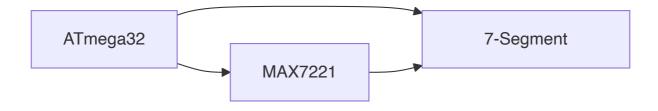
Answer:

Connection Table:

LM35 Pin	ATmega32 Pin	Function
Vcc	+5V	Power supply
Output	PA0 (ADC0)	Analog voltage
GND	GND	Ground

• Temperature Conversion: 10mV/°C output

• **ADC Resolution**: 10-bit (0-1023)


• Voltage Range: 0V to 5V (0°C to 500°C)

Mnemonic: "Power Output Ground Temperature"

Question 4(c) [7 marks]

Draw and explain interfacing of MAX7221 with ATmega32.

Answer:

Connection Table:

MAX7221 Pin	ATmega32 Pin	Function
DIN	MOSI (PB5)	Serial data input
CLK	SCK (PB7)	Serial clock
LOAD	SS (PB4)	Chip select

Features:

• SPI Interface: Serial communication protocol

• 8-Digit Display: Controls up to 8 seven-segment displays

• **Built-in Decoder**: BCD to seven-segment conversion

• Brightness Control: 16 intensity levels

Programming Steps:

1. Initialize SPI in master mode

2. Send address and data bytes

3. Pulse LOAD signal to latch data

Mnemonic: "Serial Clock Load Display"

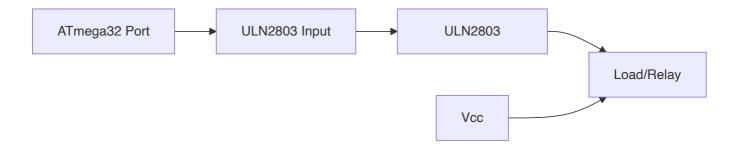
Question 4(a OR) [3 marks]

Write an AVR C program to get a byte of data from Port B, and then send it to Port C.

Answer:

Program Function:

Configure Port B as input, Port C as output


• Continuously read from PINB and write to PORTC

Mnemonic: "Input Output Read Write"

Question 4(b OR) [4 marks]

Draw and explain interfacing of ULN2803 with ATmega32.

Answer:

ULN2803 Features:

Feature	Description	
8 Darlington Arrays	High current switching	
Input Current	500μA typical	
Output Current	500mA per channel	
Built-in Flyback Diodes	Inductive load protection	

• Application: Drive relays, motors, solenoids

• Voltage Drop: 1.2V typical across Darlington pair

• Active Low Output: Output goes low when input is high

Mnemonic: "Darlington Current Protection Drive"

Question 4(c OR) [7 marks]

Discuss registers used to program SPI in the AVR.

Answer:

SPI Registers:

Register	Bits	Function
SPCR	SPE, DORD, MSTR, CPOL	SPI Control Register
SPSR	SPIF, WCOL, SPI2X	SPI Status Register
SPDR	-	SPI Data Register

SPCR Register Bits:

• SPE: SPI Enable

• DORD: Data Order (MSB/LSB first)

• MSTR: Master/Slave Select

• **CPOL**: Clock Polarity

• CPHA: Clock Phase

SPSR Register Bits:

• SPIF: SPI Interrupt Flag

• WCOL: Write Collision Flag

• SPI2X: Double Speed Mode

Programming Sequence:

1. Configure SPI pins as input/output

2. Set SPCR register for desired mode

3. Write data to SPDR

4. Wait for SPIF flag

5. Read received data from SPDR

Mnemonic: "Control Status Data Enable Order Master"

Question 5(a) [3 marks]

Draw and explain pin diagram of L293D motor driver IC.

Answer:

```
L293D
   +----+
        16|-Vcc1
1EN-|1
            15 | -4A
1A-- | 2
1Y--|3
           14 | -4Y
GND- | 4
           13 | -GND
GND- | 5
            12 | -GND
2Y-- | 6
            11 | -3Y
2A--|7
            10 | -3A
             9 | -2EN
Vcc2 8
```

Pin Functions:

Pin	Function
1A, 2A	Input signals for Motor 1
3A, 4A	Input signals for Motor 2
1Y, 2Y	Output to Motor 1
3Y, 4Y	Output to Motor 2
1EN, 2EN	Enable pins for motors
Vcc1	Logic supply (+5V)
Vcc2	Motor supply (+12V)

Mnemonic: "Input Output Enable Logic Motor Supply"

Question 5(b) [4 marks]

Draw and explain ADMUX register.

Answer:

ADMUX (ADC Multiplexer Selection Register):

Bit	Name	Function
7,6	REFS1,REFS0	Reference Selection
5	ADLAR	ADC Left Adjust Result
4-0	MUX4-MUX0	Analog Channel Selection

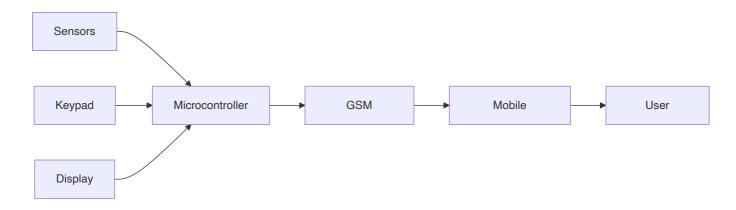
	·	•		•	•	•	-++
	•	•		•	•		MUX0 -++
7	6	5	4	3	2	1	0

Reference Selection:

• 00: AREF pin

• 01: AVcc with external capacitor

• 11: Internal 2.56V reference


Channel Selection: MUX bits select ADC0-ADC7 channels

Mnemonic: "Reference Adjust Multiplexer Channel"

Question 5(c) [7 marks]

Explain GSM based security system.

Answer:

System Components:

Component	Function
PIR Sensor	Motion detection
Door Sensor	Entry detection
GSM Module	SMS/Call communication
Microcontroller	System control
Keypad	User interface
Display	Status indication

Working Principle:

- 1. Sensors detect intrusion
- 2. Microcontroller processes signal
- 3. GSM module sends SMS alert
- 4. User receives notification
- 5. System can be armed/disarmed remotely

Features:

- Remote Monitoring: SMS notifications
- Multiple Sensors: PIR, door, window sensors
- User Interface: LCD display and keypad
- **Emergency Response**: Automatic alert system

Mnemonic: "Sensors Process Communicate Alert Control"

Question 5(a OR) [3 marks]

Draw circuit diagram to interface DC motor with ATmega32 using L293D motor driver.

Answer:

Connection Table:

ATmega32	L293D	Function
PA0	1A (Pin 2)	Direction control 1
PA1	2A (Pin 7)	Direction control 2
PA2	1EN (Pin 1)	Motor enable

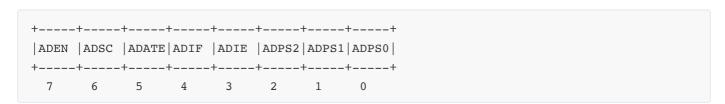
Motor Control:

• PA0=1, PA1=0: Clockwise rotation

• PA0=0, PA1=1: Counter-clockwise rotation

PA2=0: Motor stop

Mnemonic: "Direction Enable Control Stop"


Question 5(b OR) [4 marks]

Draw and explain ADCSRA register.

Answer:

ADCSRA (ADC Control and Status Register A):

Bit	Name	Function
7	ADEN	ADC Enable
6	ADSC	ADC Start Conversion
5	ADATE	ADC Auto Trigger Enable
4	ADIF	ADC Interrupt Flag
3	ADIE	ADC Interrupt Enable
2-0	ADPS2-ADPS0	ADC Prescaler Select

Prescaler Selection:

• 000: Division factor 2

• 001: Division factor 2

• 010: Division factor 4

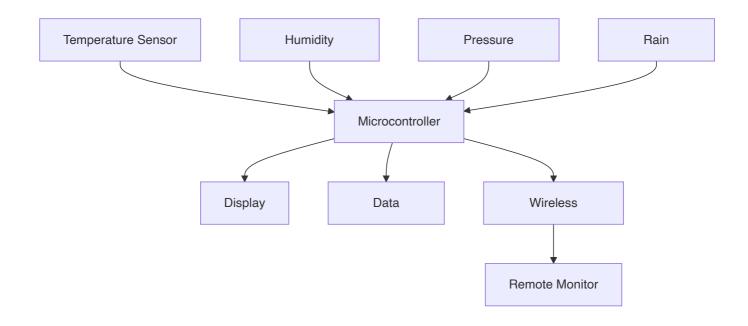
• 011: Division factor 8

ADC Operation Steps:

1. Set ADEN to enable ADC

2. Set ADSC to start conversion

3. Wait for ADIF flag


4. Read result from ADCH:ADCL

Mnemonic: "Enable Start Auto Interrupt Prescaler"

Question 5(c OR) [7 marks]

Explain Weather monitoring system.

Answer:

System Components:

Sensor	Parameter	Interface
LM35	Temperature	Analog (ADC)
DHT11	Humidity	Digital
BMP180	Pressure	I2C
Rain Sensor	Precipitation	Digital

Features:

- Multi-parameter Monitoring: Temperature, humidity, pressure, rainfall
- Data Logging: Store readings in EEPROM/SD card
- Real-time Display: LCD shows current readings
- Wireless Communication: WiFi/GSM for remote monitoring
- Alert System: Threshold-based warnings

Applications:

- Agricultural monitoring
- Weather forecasting
- Environmental research
- Smart home automation

System Benefits:

- Automated Data Collection: Continuous monitoring
- Remote Access: View data from anywhere

- Historical Analysis: Trend identification
- Early Warning: Extreme weather alerts

Mnemonic: "Temperature Humidity Pressure Rain Display Log Wireless"