Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

What is the definition of an embedded system? Provide an example of an embedded system.

Answer:
An embedded system is a specialized computer system designed to perform specific tasks with dedicated
functions. It combines hardware and software components that are integrated into a larger system.

Key Features:

¢ Real-time operation: Responds to inputs within specified time limits
e Dedicated function: Designed for specific applications

e Resource constraints: Limited memory, power, and processing capabilities

Example: Washing machine controller that manages wash cycles, water temperature, and timing
automatically.

Mnemonic: "SMART Embedded" - Specialized, Microprocessor-based, Application-specific, Real-time, Task-
oriented

Question 1(b) [4 marks]

Define a Real-Time Operating System (RTOS) and list three characteristics of RTOS.

Answer:
RTOS is an operating system designed to handle real-time applications where timing constraints are critical
for system operation.

Characteristic Description

Deterministic Response Guaranteed response time for critical tasks
Priority-based Scheduling High-priority tasks execute before low-priority tasks
Multitasking Support Multiple tasks can run concurrently

Additional Features:

e Task management: Efficiently handles multiple concurrent processes
e Interrupt handling: Quick response to external events

e Memory management: Optimized for embedded applications

Mnemonic: "DPM RTOS" - Deterministic, Priority-based, Multitasking

Question 1(c) [7 marks]

No. 1/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

a) Draw the general block diagram of Embedded System
b) Explain the criteria for choosing a microcontroller for an embedded system.

Answer:

a) General Block Diagram:

Input Devices —> Output
—
Power Supply Microcontroller/Processor Memory System
\
Clock/Timer Communication Interface

b) Microcontroller Selection Criteria:

Criteria Considerations

Processing Speed Clock frequency, instruction execution time
Memory Requirements Flash, RAM, EEPROM capacity

1/0 Capabilities Number of pins, special functions

Power Consumption Battery life, sleep modes

Cost Budget constraints, volume pricing
Development Tools Compiler, debugger availability

Key Factors:

e Performance requirements: Processing speed and real-time constraints
¢ Interface needs: ADC, PWM, communication protocols

e Environmental conditions: Operating temperature, humidity

Mnemonic: "PMPICD Selection" - Performance, Memory, Power, Interface, Cost, Development tools

Question 1(c) OR [7 marks]

Explain the pin configuration of the ATmega32.

No. 2 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Answer:
ATmega32 is a 40-pin microcontroller with four 8-bit I/0 ports and various special function pins.

Port Configuration:

Port Pins Functions

Port A PAQ-PA7 ADC channels, general 1/0

Port B PBO-PB7 SPI, PWM, external interrupts

Port C PCO-PC7 TWI, general 1/0

Port D PDO-PD7 USART, external interrupts, PWM
Special Pins:

VCC/GND: Power supply pins

AVCC/AGND: Analog power supply for ADC
XTAL1/XTAL2: Crystal oscillator connections
RESET: Active low reset input

AREF: ADC reference voltage

Pin Functions:

Dual-purpose pins: Most pins have alternate functions
Input/Output capability: All port pins are bidirectional

Internal pull-up: Software configurable for input pins

Mnemonic: "ABCD Ports" - ADC, Bus interfaces, Communication, Data transfer

Question 2(a) [3 marks]

Explain the data memory architecture of ATMEGA32.

Answer:
ATmega32 data memory consists of three sections organized in a unified address space.

Memory Organization:

Section Address Range Size Purpose

General Registers 0x00-0x1F 32 bytes Working registers RO-R31
I1/0 Registers 0x20-0x5F 64 bytes Control and status registers
Internal SRAM 0x60-0x45F 2048 bytes Data storage and stack

Key Features:

No. 3/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

¢ Unified addressing: All memory accessible through single address space
e Register file: RO-R31 for arithmetic and logic operations

e Stack pointer: Points to top of stack in SRAM

Mnemonic: "GIS Memory" - General registers, 10 registers, SRAM

Question 2(b) [4 marks]

Explain the Program Status Word.

Answer:
SREG (Status Register) contains flags that reflect the result of arithmetic and logic operations.

SREG Bit Configuration:

Bit Flag Description

Bit 7 I Global Interrupt Enable
Bit 6 T Bit Copy Storage

Bit 5 H Half Carry Flag

Bit 4 S Sign Flag

Bit 3 Vv Overflow Flag

Bit 2 N Negative Flag

Bit 1 yA Zero Flag

Bit 0 C Carry Flag

Flag Functions:

e Arithmetic operations: C, Z, N, V, H flags updated automatically
e Conditional branching: Flags used for decision making

¢ Interrupt control: | flag enables/disables global interrupts

Mnemonic: "I THSVNZC" - Interrupt, Transfer, Half-carry, Sign, oVerflow, Negative, Zero, Carry

Question 2(c) [7 marks]

Draw and explain the architecture of ATMEGA32.
Answer:

ATmega32 Architecture:

No. 4 /26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

N

Instruction Decoder

ALU

‘ ‘ ‘ ‘ ‘ Timers/Counters ‘ ‘ ADC ‘ ‘ USART ‘ ‘ SPI ‘ ‘ TWI ‘

P e

Architecture Components:

Component Description

Harvard Architecture Separate program and data memory buses
RISC Core 131 instructions, mostly single-cycle execution
ALU 8-bit arithmetic and logic operations

Register File 32 x 8-bit working registers

Memory System:

e Program memory: 32KB Flash for storing instructions
e Data memory: 2KB SRAM for variables and stack

e EEPROM: 1KB non-volatile data storage

Peripheral Features:

e Three timer/counters: 8-bit and 16-bit timers
e 8-channel ADC: 10-bit resolution

¢ Communication interfaces: USART, SPI, TWI

Mnemonic: "HRAM Micro" - Harvard architecture, RISC core, ALU, Memory system

Question 2 OR(a) [3 marks]

Explain Program Counter of ATMEGA32.

Answer:
Program Counter (PC) is a 16-bit register that holds the address of the next instruction to be executed.

No. 5/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

PC Characteristics:

Feature Description

Size 16-bit (can address 64KB program memory)
Reset Value 0x0000 (starts execution from beginning)
Increment Automatically incremented after instruction fetch
Jump/Branch Modified by jump, branch, and call instructions

PC Operations:

e Sequential execution: PC increments by 1 for most instructions
e Branch instructions: PC loaded with target address

¢ Interrupt handling: PC saved on stack, loaded with interrupt vector

Mnemonic: "SRIB PC" - Sequential, Reset, Increment, Branch

Question 2 OR(b) [4 marks]

Explain the role of clock and reset circuits in an AVR microcontroller.
Answer:

Clock System:

Clock Source Description

External Crystal High accuracy, 1-16 MHz typical
Internal RC Built-in 8 MHz oscillator
External Clock External clock signal input
Low-frequency Crystal 32.768 kHz for RTC applications

Reset Circuit Functions:

e Power-on Reset: Automatic reset when power is applied
e Brown-out Reset: Reset when supply voltage drops

e External Reset: Manual reset through RESET pin

e Watchdog Reset: Reset from watchdog timer timeout

Key Features:

e Clock distribution: System clock drives CPU and peripherals

¢ Reset sequence: Initializes all registers to default values

No. 6/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

e Fuse bits: Configure clock source and reset options

Mnemonic: "CEIL Clock" - Crystal, External, Internal, Low-frequency

Question 2 OR(c) [7 marks]

Explain TCCRn and TIFR Timer Register
Answer:

TCCRn (Timer/Counter Control Register):

Register Function

TCCRO Controls Timer0 operation mode
TCCR1A/B Controls Timer1 (16-bit) operation
TCCR2 Controls Timer2 operation mode

TCCR Bit Functions:

e Clock Select (CS): Selects clock source and prescaler
e Waveform Generation (WGM): Sets timer mode (Normal, CTC, PWM)

e Compare Output Mode (COM): Controls output pin behavior

TIFR (Timer Interrupt Flag Register):

Bit Flag Description

TOV Timer Overflow Set when timer overflows

OCF Output Compare Set when compare match occurs
ICF Input Capture Set when input capture event occurs

Timer Operations:

e Mode selection: Normal, CTC, Fast PWM, Phase Correct PWM
e Interrupt generation: Flags trigger interrupts when enabled

e Output generation: PWM signals for motor control, LED dimming

Mnemonic: "TCCR WGM" - Timer Control, Clock, Register, Waveform Generation Mode

Question 3(a) [3 marks]

Distinguish different data types for programming AVR in C.

Answer:

No. 7 /26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

AVR C Data Types:

Data Type Size Range

char 8-bit -128 to 127
unsigned char 8-bit 0to 255

int 16-bit -32768 to 32767
unsigned int 16-bit 0 to 65535

long 32-bit -2311t0 2311
float 32-bit +3.4x1038

Special Considerations:

e Memory efficient: Use smallest suitable data type
e Port operations: unsigned char for 8-bit ports

e Timing calculations: unsigned int for timer values

Mnemonic: "CUIL Float" - Char, Unsigned, Int, Long, Float

Question 3(b) [4 marks]

Write a C program to toggle all the bits of Port C 200 times.

Answer:

#include <avr/io.h>
#include <util/delay.h>

int main() {
DDRC = OxFF; // Set Port C as output

unsigned int count = 0;

while(count < 200) {

Usage

Characters, small integers
Port values, flags

General integers
Counters, addresses
Large calculations

Decimal calculations

PORTC = OxFF; //
_delay ms(100); //
PORTC = 0x00; //
_delay ms(100); //
count++; //

}

return 0;

Program Explanation:

e DDRC = 0xFF: Configures all

Set all bits high
Delay
Set all bits low
Delay

Increment counter

Port C pins as outputs

No. 8 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

e Toggle operation: Alternates between OxFF and 0x00
e Counter: Tracks number of toggle cycles

e Delay: Provides visible timing for toggle operation

Mnemonic: "DTC Loop" - DDR setup, Toggle bits, Count iterations, Loop control

Question 3(c) [7 marks]

a) LED are connected to Pins of PORTB. Write an AVR programs to show the count from 0 to FFh on
the LED

b) Write an AVR C program to get a byte of data from Port C. If it is less than 100 send it to Port B;
otherwise, send it to Port D.

Answer:
a) Binary Counter Display:

#include <avr/io.h>
#include <util/delay.h>

int main() {
DDRB = 0OxFF; // Port B as output

unsigned char count = 0;

while(1l) {
PORTB = count; // Display count on LEDs
_delay ms(500); // Delay for visibility
count++; // Increment counter

if (count > OXFF) // Reset after 255
count = 0;

}

return 0;

b) Conditional Data Transfer:

#include <avr/io.h>

int main() {

DDRC = 0x00; // Port C as input
DDRB = 0xFF; // Port B as output
DDRD = OxFF; // Port D as output
while(1) {

unsigned char data = PINC; // Read from Port C
if (data < 100) {

PORTB = data; // Send to Port B
PORTD = 0x00; // Clear Port D

No. 9/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

} else {
PORTD = data; // Send to Port D
PORTB = 0x00; // Clear Port B
}
}
return 0;

Key Programming Concepts:

e Port direction: DDR registers configure input/output
e Data reading: PIN registers read input values

e Conditional logic: if-else statements for decision making

Mnemonic: "RCC Data" - Read input, Compare value, Conditional output

Question 3 OR(a) [3 marks]

Write AVR C program to send values of -3 to +3 Port B

Answer:

#include <avr/io.h>

#include <util/delay.h>

int main() {
DDRB = 0OxFF; // Port B as output
signed char values[] = {-3, -2, -1, 0, 1, 2, 3};

unsigned char i = 0;

while(1l) {
PORTB = values[i]; // Send value to Port B
_delay ms(1000); // 1 second delay
i++; // Next value
if(i > 6) i = 0; // Reset index
}

return 0;

Program Features:

e Signed data: Uses signed char for negative values
e Array storage: Values stored in array for easy access

e Cyclic operation: Continuously cycles through all values

Mnemonic: "SAC Values" - Signed char, Array storage, Cyclic operation

No. 10 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Question 3 OR(b) [4 marks]

Write AVR C program to send hex values for ASCII characters 0,1,2,3,4,5,A,B,C and D to port B.

Answer:

#include <avr/io.h>

#include <util/delay.h>

int main() {
DDRB = 0xFF; // Port B as output

// ASCII hex values array
unsigned char ascii_values[] = {

0x30, // '0'

0x31, // '1'

0x32, // '2'

0x33, // '3

0x34, // '4'

0x35, // '5'

0x41, // 'A’
ox42, // 'B'
0x43, // 'C'
0x44 // 'D'

}i

unsigned char i = 0;

while(1) {
PORTB = ascii values[i]; // Send ASCII value
_delay ms(500); // Delay
i++; // Next character
if(i > 9) i = 0; // Reset index

}

return 0;

ASCII Values Table:

Character Hex Value Binary

'0' 0x30 00110000
"' 0x31 00110001
‘A’ 0x41 01000001
'B' 0x42 01000010

Mnemonic: "HAC ASCII" - Hex values, Array storage, Cyclic transmission

No. 11/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Question 3 OR(c) [7 marks]

A door sensor is connected to bit 1 of Port B, and an LED is connected to bit 7 of Port C. Write an AVR
C program to monitor the door sensor and, when it opens (PIN is HIGH), turn on the LED. Also draw
Flow chart.

Answer:

C Program:

#include <avr/io.h>

int main() {
DDRB = 0xFD; // Port B bit 1 as input (0), others output (1)
DDRC = O0xFF; // Port C as output

PORTB = 0x02; // Enable pull-up for bit 1

while(1) {
if(PINB & 0x02) { // Check if door sensor is HIGH
PORTC |= 0x80; // Turn ON LED (bit 7)
} else {
PORTC &= 0x7F; // Turn OFF LED (bit 7)
b
}
return 0;
}
Flow Chart:

HIGH

Read Door Sensor

i Port B bit 1 fi Port C bit 7
Start Initialize Ports oy |gure. © thas —» Conigure Port C bit 7 as LOW- Turn OFF Continue
input output

Bit Operations:

¢ Inputreading: PINB & 0x02 checks bit 1
e LED control: PorRTC |= 0x80 sets bit7

e LED off: porTC &= 0x7F clears bit7

Mnemonic: "BIC Door" - Bit manipulation, Input monitoring, Conditional LED control

Question 4(a) [3 marks]

Explain ADMUX ADC Register
Answer:

ADMUX (ADC Multiplexer Selection Register):

No. 12 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Bit Name Description

Bit 7-6 REFS1:0 Reference Selection

Bit 5 ADLAR ADC Left Adjust Result
Bit 4-0 MUX4:0 Analog Channel Selection

Reference Selection (REFS1:0):

e 00: AREF, Internal Vref turned off
e 01: AVCC with external capacitor at AREF pin
e 10: Reserved

e 11:Internal 2.56V reference
Channel Selection (MUX4:0):

e 00000-00111: ADCO-ADC7 (single-ended inputs)

e Other combinations: Differential inputs with gain
Key Functions:

e Voltage reference: Determines ADC measurement range
e Channel multiplexing: Selects which analog input to convert

e Result alignment: Left or right justified ADC result

Mnemonic: "RAM ADMUX" - Reference, Alignment, Multiplexer

Question 4(b) [4 marks]

Explain Different LCD Pins.
Answer:

16x2 LCD Pin Configuration:

No. 13 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Pin Symbol Function

1 VSS Ground (0V)

2 VDD Power supply (+5V)

3 VO Contrast adjustment

4 RS Register Select (Data/Command)
5 R/W Read/Write select

6 E Enable signal

7-14 D0-D7 Data bus (8-bit)

15 A Backlight anode (+)

16 K Backlight cathode (-)

Control Pin Functions:
e RS =0: Command register selected
e RS =1: Data register selected
e R/W = 0: Write operation

e R/W = 1: Read operation

E: Enable pulse triggers operation
Connection Modes:

e 8-bit mode: All data pins DO-D7 connected

e 4-bit mode: Only D4-D7 used (saves microcontroller pins)

Mnemonic: "VCR EDB LCD" - Vpower, Contrast, Register select, Enable, Data Bus

Question 4(c) [7 marks]

Write a Program to toggle all the bits of PORTB continually with 20ps delay. Use Timer0, normal
mode and no Prescaler to generate delay

Answer:

#include <avr/io.h>

void delay 20us() {

TCNTO = 0; // Clear timer counter

TCCRO = 0x01; // No prescaler, normal mode
while(TCNTO < 160); // Wait for 20us (8MHz/1 * 20us = 160)
TCCRO = 0; // Stop timer

No. 14 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

int main() {
DDRB = 0xFF; // Port B as output

while(1) {
PORTB = OxFF; // Set all bits high
delay 20us(); // 20us delay
PORTB = 0x00; // Set all bits low
delay 20us(); // 20us delay

}

return 0;

Timer Calculation:

e Clock frequency: 8 MHz (assumption)
e Timer resolution: 1/8MHz = 0.125ps per count

e Required counts: 20pus / 0.125pus = 160 counts

Timer0 Configuration:

Setting Value Description

Mode Normal Counts from 0 to 255
Prescaler 1 No prescaling

Clock source System clock 8 MHz

Program Flow:

¢ Initialize: Set Port B as output
e Toggle high: PORTB = OxFF, wait 20ps
e Toggle low: PORTB = 0x00, wait 20ps

e Repeat: Continuous operation

Mnemonic: "TNP Timer" - Timer0, Normal mode, Prescaler none

Question 4 OR(a) [3 marks]

Short note Two wire Interface (TWI)
Answer:
TWI (Two Wire Interface) - 12C Protocol:

Key Features:

No. 15/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Feature Description

Two wires SDA (data) and SCL (clock)
Multi-master Multiple masters can control bus
Multi-slave Up to 127 slave devices
Address-based 7-bit or 10-bit device addressing
Bidirectional Data flows in both directions

Bus Characteristics:

e Open-drain: Requires pull-up resistors (4.7kQ typical)

e Synchronous: Clock provided by master

e Start/Stop conditions: Special sequences for communication
Common Applications:

e EEPROMs: Non-volatile memory storage
e RTC modules: Real-time clock devices
e Sensors: Temperature, pressure, accelerometer

e Display controllers: OLED, LCD controllers

Mnemonic: "SDA SCL TWI" - Serial Data, Serial CLock, Two Wire Interface

Question 4 OR(b) [4 marks]

Explain ADCSRA ADC Register
Answer:

ADCSRA (ADC Control and Status Register A):

Bit Name Function

Bit 7 ADEN ADC Enable

Bit 6 ADSC ADC Start Conversion
Bit5 ADATE ADC Auto Trigger Enable
Bit 4 ADIF ADC Interrupt Flag

Bit 3 ADIE ADC Interrupt Enable
Bit 2-0 ADPS2:0 ADC Prescaler Select

Prescaler Settings (ADPS2:0):

No. 16 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Binary Division Factor ADC Clock (8MHz)
000 2 4 MHz

001 2 4 MHz

010 4 2 MHz

011 8 1 MHz

100 16 500 kHz

101 32 250 kHz

110 64 125 kHz

111 128 62.5 kHz

Control Functions:

e ADEN: Must be set to enable ADC operation
e ADSC: Set to start conversion, cleared when complete
e ADIF: Set when conversion completes

e Prescaler: ADC clock should be 50-200 kHz for optimal accuracy

Mnemonic: "EASCID ADC" - Enable, Auto-trigger, Start, Conversion, Interrupt, Divider

Question 4 OR(c) [7 marks]

Write a Program to generate a square wave of 16 Khz frequency on pin PORTC.3. Assume Crystal
Frequency 8 Mhz

Answer:

#include <avr/io.h>

#include <avr/interrupt.h>

int main() {
// Configure PC3 as output
DDRC |= (1 << PC3);

// Timerl CTC mode configuration
TCCR1A = 0x00; // Normal port operation
TCCR1B = (1 << WGM12) | (1 << CS10); // CTC mode, no prescaler

// Calculate OCR1A value for 16 kHz
// Period = 1/16000 = 62.5us

// Half period = 31.25us

// OCR1A = (8MHz * 31.25us) - 1 = 249
OCR1A = 249;

No. 17/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

// Enable Timerl Compare A interrupt
TIMSK |= (1 << OCIElA);

// Enable global interrupts

sei();

while(1l) {

// Main loop - square wave generated by interrupt

}

return 0;

// Timerl Compare A interrupt service routine
ISR(TIMER1_COMPA vect) {
PORTC "= (1 << PC3); // Toggle PC3

Frequency Calculation:

Parameter Value
Target frequency 16 kHz
Period 62.5 ps
Half period 31.25 ps
Timer counts 250
OCR1A value 249

Timer Configuration:

e Mode: CTC (Clear Timer on Compare)
e Prescaler: 1 (no prescaling)

¢ Interrupt: Compare match toggles output pin

Formula

Given

1/16000
Period/2

8MHz x 31.25pus

Counts - 1

Mnemonic: "CTC Square" - CTC mode, Timer interrupt, Compare match

Question 5(a) [3 marks]

Difference between Polling and Interrupt
Answer:

Polling vs Interrupt Comparison:

No. 18 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Aspect Polling Interrupt

CPU Usage Continuously checks status CPU free until event occurs
Response Time Variable, depends on polling frequency Fast, immediate response
Power Consumption Higher due to continuous checking Lower, CPU can sleep
Programming Simple, sequential code Complex, requires ISR
Real-time Not suitable for critical timing Excellent for real-time systems

Key Differences:

e Efficiency: Interrupts are more CPU efficient
e Timing: Interrupts provide deterministic response

e Complexity: Polling is easier to implement and debug

Mnemonic: "PIE Method" - Polling inefficient, Interrupt efficient, Event-driven

Question 5(b) [4 marks]

Explain LM35 Interface with AVR ATmega32.
Answer:

LM35 Temperature Sensor Interface:

+-——— To ADC Pin (PAO)

LM35 Characteristics:

Parameter Value Description

Output 10mVv/°C Linear temperature coefficient
Range 0°C to 100°C Operating temperature range
Supply 4V to 30V Power supply range

Accuracy +0.5°C Temperature accuracy

Interface Code:

No. 19 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

#include <avr/io.h>

void ADC_init() {
ADMUX = 0x40; // AVCC reference, ADCO channel
ADCSRA = 0x87; // Enable ADC, prescaler 128

unsigned int read_temperature() {
ADCSRA |= (1 << ADSC); // Start conversion
while(ADCSRA & (1 << ADSC)); // Wait for completion

// Convert ADC value to temperature
// Temperature = (ADC * 5000) / (1024 * 10)
unsigned int temp = (ADC * 5000) / 10240;

return temp;

Calculation:

e ADC Resolution: 10-bit (0-1023)
e Reference Voltage: 5V
e LM35 Scale: 10mV/°C

e Formula: Temperature = (ADC_Value x 5000mV) /(1024 x 10mV/°C)

Mnemonic: "LAC Temperature" - LM35 sensor, ADC conversion, Calculation formula

Question 5(c) [7 marks]
Write a program to interface DC Motor with AVR ATmega32.

Answer:

DC Motor Interface Circuit:

ATmega3?2 L293D Motor Driver DC Motor
Fmm e ——— + Fmm + Fomm———— +
| PD5 B >| IN1 0l |==———mmm— > | + |
| PD6 B >| IN2 02 |==———mmmm———e > | - |
| PpD4 B >| EN1 | tomm e +
Fomm———— + Fmm e +

| I

+5V GND

Motor Control Program:

#include <avr/io.h>

#include <util/delay.h>

No. 20/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

void motor init() {
DDRD |= (1 << PD4) |

void motor forward() {
PORTD |= (1 << PD4);
PORTD |= (1 << PD5);
PORTD &= ~(1 << PD6);

void motor reverse() {

PORTD |= (1 << PD4);
PORTD &= ~(1 << PD5);
PORTD |= (1 << PD6);

void motor_ stop() {
PORTD &= ~(1 << PD4);

int main() {

motor_init();

while(1l) {
motor forward();
_delay ms(2000);

motor_stop();
_delay ms(1000);

motor_ reverse();
_delay ms(2000);

motor_stop();
_delay ms(1000);
}

return 0;

L293D Truth Table:

EN IN1
0 X
1 0
1 0
1 1
1 1

(1 << PD5) | (1 << PD6); //

// Enable motor

// IN1 =1

// IN2 = 0

// Enable motor

// IN1 = 0

// IN2 =1

// Disable motor

// Forward for 2 seconds

// Stop for 1 second

// Reverse for 2 seconds

// Stop for 1 second

IN2

No. 21/ 26

Set as output

Motor Action
Stop

Stop

Reverse
Forward

Stop

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Key Components:

e L293D: Dual H-bridge motor driver IC

e Enable pin: Controls motor power

e Direction pins: IN1, IN2 control rotation direction

e Protection: Built-in diodes for back EMF protection

Mnemonic: "LED Motor" - L293D driver, Enable control, Direction pins

Question 5 OR(a) [3 marks]

Explain basic block diagram of GSM based security system.

Answer:

GSM Security System Block Diagram:

Power Supply

T

GSM

v

Mobile

A 4

User Mobile

Sensors

ATmega32 Alarm/Buzzer

System Components:

Component
Sensors
Microcontroller
GSM Module
Display

Alarm

Working Principle:

——>|
\ JEE—.

Function

PIR, door/window sensors, smoke detector

Process sensor data, control system

Send SMS alerts, make calls

Show system status

Local audio/visual alert

e Sensor monitoring: Continuous surveillance of security zones

e Event detection: Triggered when unauthorized access detected

e Alert generation: SMS sent to predefined numbers

e Local alarm: Immediate audio/visual warning

Key Features:

No. 22 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

e Remote monitoring: Real-time alerts via SMS
¢ Multiple sensors: Various intrusion detection methods

e Backup power: Battery backup for power failures

Mnemonic: "SGMA Security" - Sensors, GSM module, Microcontroller, Alerts

Question 5 OR(b) [4 marks]

Explain Relay Interface with AVR ATmega32.
Answer:

Relay Interface Circuit:

ATmega32 ULN2803 Relay Load
oo + o + e + oo +
| PBO |-————————- >| IN1 Ol |----——- >| coM |---->| AC |
| PBl |————mm———o >| IN2 02 |-=—————- >| NO | | Load |
Promcoooos + o — + to——— + e —— +
| |
GND +12V

Relay Interface Code:

#include <avr/io.h>
#include <util/delay.h>

void relay_ init() {

DDRB |= (1 << PBO) | (1 << PBl); // Set as output pins

void relayl on() {
PORTB |= (1 << PB0); // Activate relay 1

void relayl off() {
PORTB &= ~(1 << PB0); // Deactivate relay 1

void relay2 on() {
PORTB |= (1 << PBl); // Activate relay 2

void relay2 off() {
PORTB &= ~(1 << PBl); // Deactivate relay 2

int main() {

relay init();

No. 23/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

while(1l) {
relayl on(); // Turn on relay 1
_delay ms(2000);
relayl off(); // Turn off relay 1
relay2 on(); // Turn on relay 2
_delay ms(2000);
relay2 off(); // Turn off relay 2

_delay ms(1000);
}

return 0;

ULN2803 Features:

Feature Description
8 Channels Eight Darlington pair drivers
High Current Up to 500mA per channel
Protection Built-in flyback diodes
Input Voltage 5V TTL compatible
Output Voltage Up to 50V

Applications:

e Home automation: Light, fan control
¢ Industrial control: Motor, valve operation

e Security systems: Door locks, alarms

Mnemonic: "ULN Relay" - ULN2803 driver, Load control, Non-contact switching

Question 5 OR(c) [7 marks]

Draw and Explain Automatic Juice vending machine
Answer:

Automatic Juice Vending Machine Block Diagram:

No. 24 / 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

Power Supply Level LCD Display Keypad Coin
Juice ATmega32 Controller
‘ // \
Pump Solenoid Valves Coin Return Mechanism
A
Dispensing

System Components:

| Component | Function |

===

| Coin Sensor | Detects and validates inserted coins |
| Keypad | User selection interface (4x4 matrix) |

| LCD Display | Shows menu, price, status messages |
| Pump Motors | Dispense selected juice |

| Solenoid Valves | Control juice flow |

| Level Sensors | Monitor juice container levels |

| Coin Return | Returns excess money |

System Operation:
1. Initialization: Display welcome message and juice menu

. Coin Input: User inserts coins, system validates amount

. Selection: User presses keypad to select juice type

2
3
4. Validation: Check if enough money and juice available
5. Dispensing: Activate pump and valve for selected juice
6

. Completion: Return change if any, display thank you message

Control Logic:

// Pseudo code for vending machine operation
void vending machine() {

display_menu();

while(1l) {
if (coin inserted()) {
total amount += validate coin();

update_display();

No. 25/ 26

Embedded System & Microcontroller Application (4351102) - Summer 2024 Solution by Milav Dabgar

if (selection made()) {
juice type = get selection();
if (total_amount >= juice price[juice_type]) {
if(juice_available[juice_type]) {
dispense juice(juice_type);
return change();
reset_system();
} else {
display_error("Out of Stock");

}
} else {

display_ error("Insufficient Amount");

Key Features:

e Multiple juice types: 4-6 different flavors

e Automatic dispensing: Precise volume control

e Change return: Calculates and returns exact change
¢ Inventory tracking: Monitors juice levels

e Error handling: Handles various fault conditions
Safety Features:

e Over-dispensing protection: Timer-based pump control
e Coin validation: Prevents fake coin acceptance
e Level monitoring: Prevents dry running of pumps

e Emergency stop: Manual override capability

Mnemonic: "CLPDV Juice" - Coin sensor, LCD display, Pump motors, Dispensing unit, Valve control

No. 26 / 26

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2 OR(a) [3 marks]
	Question 2 OR(b) [4 marks]
	Question 2 OR(c) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3 OR(a) [3 marks]
	Question 3 OR(b) [4 marks]
	Question 3 OR(c) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4 OR(a) [3 marks]
	Question 4 OR(b) [4 marks]
	Question 4 OR(c) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5 OR(a) [3 marks]
	Question 5 OR(b) [4 marks]
	Question 5 OR(c) [7 marks]

