Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Question 1(a) [3 marks]

Define algorithm and write an algorithm to find area of circle.

Answer:
An algorithm is a step-by-step procedure or set of rules for solving a specific problem or accomplishing a
particular task.

Algorithm to find area of circle:

Step 1: Start

Step 2: Input radius (r) of the circle
Step 3: Calculate area = m x r?2

Step 4: Display the area

Step 5: Stop

Mnemonic: "Start, Read, Calculate, Display, Stop"

Question 1(b) [4 marks]

Define flowchart and draw a flowchart to find minimum of three numbers.

Answer:
A flowchart is a visual representation of an algorithm using standardized symbols and shapes connected by
arrows to show the sequence of steps.

Flowchart to find minimum of three numbers:

Yes—» min = A

No—» min=C

Yes—» min=B

No—» min=C

e Comparison Strategy: First compare A and B, then compare with C

e Branching Logic: Use if-else structure to find smallest value

Mnemonic: "Compare pairs, find the rare small value everywhere"

Question 1(c) [7 marks]

Write a program to calculate simple interest using below equation. I=PRN/100 Where P=Principle
amount, R=Rate of interest and N=Period.

No.1/28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Answer:

#include <stdio.h>

int main() {
float P, R, N, I;

// Input principal amount, rate of interest and time period
printf("Enter Principal amount: ");
scanf("%f", &P);

printf ("Enter Rate of interest: ");
scanf("%$f", &R);

printf("Enter Time period (in years): ");
scanf("%$f", &N);

// Calculate Simple Interest
I=(P *R*N)/ 100;

// Display the result
printf("Simple Interest = %.2f\n", I);

return 0;
}
Diagram:
Principal
Rate —> l=(PxRxN)/ —» Interest (1)
Period (N)

¢ Floating-point variables: Store decimal values for precision
e User interaction: Clear prompts for input

e Result formatting: %.2f displays two decimal places

Mnemonic: "Principal, Rate and Number, divided by Hundred gives Interest"

No. 2 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Question 1(c OR) [7 marks]

Write a program to read radius(R) and height(H) from keyboard and print calculated the volume(V)

of cylinder using V=ntR?H
Answer:
#include <stdio.h>
int main() {
float radius, height, volume;
const float PI = 3.14159;
// Input radius and height
printf ("Enter radius of cylinder:

scanf("%f", &radius);

printf("Enter height of cylinder:
scanf ("%$f", &height);

// Calculate volume of cylinder

")i

");

volume = PI * radius * radius * height;

// Display the result

printf("Volume of cylinder = %.2f\n", volume);

return 0;

Diagram:

/ Input radius, /L—r

Calculate volume =t x
radius? x height

N

e Constants: Pl defined as constant for cl

arity

e Formula: Use R? by multiplying radius twice

¢ Input validation: Assumes positive values for radius and height

Mnemonic: "Radius squared times height times Pi, gives cylinder volume, don't ask why"

Question 2(a) [3 marks]

List out different operators supported in C programming language.

Answer:

No. 3 /28

Category

Arithmetic

Relational

Logical

Assignment
Increment/Decrement
Bitwise

Conditional

Special

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Operators
+,-, %, /, % (addition, subtraction, multiplication, division, modulus)

==, I=, >, <, >=, <= (equal, not equal, greater than, less than, greater than or
equal to, less than or equal to)

&&, | |, (AND, OR, NOT)

=, +=, -=, *=, /=, %= (assign, plus-assign, minus-assign, etc.)

++, -- (increment, decrement)

&, |, A ~, <<,>>(AND, OR, XOR, complement, left shift, right shift)
?: (ternary operator)

sizeof(), &, *, ->, . (size, address, pointer, structure)

Mnemonic: "ARABIA CS" (Arithmetic, Relational, Assignment, Bitwise, Increment, Assignment, Conditional,

Special)

Question 2(b) [4 marks]

Explain Relational operator and Increment/Decrement operator with example.

Answer:
Operator L
Description Example Output
Type
_ Compare two values to test the relationship int a = 5, b = 10; 1
Relational
between them printf("sd", a < b); (true)
Equal to (==) intf("sd", 5 5 E
=5 rintf("%d", == 8
a £ () (true)
1
Not equal to (I=) printf("sd", 5 != 10);
(true)
printf("%d %d4d", 5 > 3,
Greater/Less than 10
5 < 3);
Increases value by 1 int x = 5;
Increment Pre-increment (++x): increment then use printf("sd ", ++x); 6 6
Post-increment (x++): use then increment printf("sd", x);
Decreases value by 1 int y = 5;
Decrement Pre-decrement (--x): decrement then use printf("sd ", y--); 5 4

Post-decrement (x--): use then decrement

printf("sd", y);

e Relational operators: Return 1 (true) or O (false)

No. 4 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

¢ Increment/Decrement: Changes variable value and returns a value

Mnemonic: "Relational tells if TRUE or LIE, Increment/Decrement makes values rise or DIE"

Question 2(c) [7 marks]

Write a program to print sum and average of 1 to 100.

Answer:

#include <stdio.h>

int main() {
int i, sum = 0;

float average;
// Calculate sum of numbers from 1 to 100

for(i = 1; i <= 100; i++) {

sum += 1i;
// Calculate average
average = (float)sum / 100;
// Display the results
printf("Sum of numbers from 1 to 100 = %d\n", sum);

printf("Average of numbers from 1 to 100 = %.2f\n", average);

return 0;

Diagram:

Yes——» sum = sum + \

Initialize sum =0 Seti=

Calculate average = sum/

No—», 100 Display sum and average

e Loop counter: Variable i tracks numbers 1 to 100
e Sum calculation: Accumulates values in sum variable

e Type casting: (float) converts sum to floating-point for accurate division

Mnemonic: "Sum One to Hundred, then Divide for Average"

Question 2(a OR) [3 marks]

State the difference between gets(S) and scanf("%s",S) where S is string.

Answer:

No. 5/ 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Feature gets(S) scanf("%s",S)
o)) Reads until whitespace (space, tab,
Input termination Reads until newline character (\n))
newline)
Whitespace , , . : .
, Can read string with spaces Stops reading at first whitespace

handling
Buffer overflow No bounds checking (unsafe) No bounds checking (unsafe)

Returns S on success, NULL on Returns number of items successfully
Return value

error read
Replacement fgets() is safer alternative scanf("%ns",S) with width limit is safer

e Safety concern: Both functions can cause buffer overflow

e Practical usage: gets() for full lines, scanf() for single words

Mnemonic: "gets Gets Everything Till newline, scanf Stops Catching After Finding whitespace"

Question 2(b OR) [4 marks]

Explain Logical operator and Assignment operator with example.

Answer:

No. 6 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Operator L.
Description Example Output
Type
, Perform logical operations on
Logical . int a = 5, b = 10;
conditions
. printf("%d", (a > 0) && (b > 1
Logical AND (&&)
0)); (true)
Logical OR (\ \)
. 1
Logical NOT (!) printf("sd", !(a == b));
(true)
Assignment Assign values to variables int x = 10; 1XO=
. . x =
Simple assignment (=) x = 20; -
) x =
Add and assign (+=) X += 5; =
Subtract and assign (-=) x -= 10; 1x5 =
Multiply and assign (*=) X *= 2; :0 -
Divide and assign (/=) X /= 3; 1Xo =

e Logical operators: Used in decision making
e Short-circuit evaluation: && and | | evaluate only what's necessary

e Compound assignment: Combines operation and assignment

Mnemonic: "AND needs all TRUE, OR needs just one; Assignment takes right, puts it on the left throne"

Question 2(c OR) [7 marks]

Write a program to print all the integers between given two floating point numbers.

Answer:

#include <stdio.h>

#include <math.h>
int main() {

float numl, num2;

int start, end, 1i;

No.7 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

// Input two floating point numbers
printf ("Enter first floating point number: ");

scanf("%f", &numl);

printf ("Enter second floating point number: ");

scanf ("%f", &num2);

// Find the ceil of smaller number and floor of larger number
if(numl < num2) {

start = ceil(numl);

end = floor(num2);
} else {

start = ceil(num2);

end = floor(numl);

// Print all integers between the two numbers
printf("Integers between %.2f and %.2f are:\n", numl, num2);
for(i = start; i <= end; i++) {

printf("sd ", i);
}
printf("\n");

return 0;

Diagram:

start = ceil(num1)
end = floor(num?2)

start &l end jeil+1 yeiisi
M2 s

num1, num2 g4y2 dl 2i numi <

start = ceil(num2)

A~
end = floor(num1)

e Math functions: ceil() rounds up, floor() rounds down
e Range determination: Works regardless of input order

¢ Integer extraction: Only prints whole numbers between floats

Mnemonic: "Ceiling the small, flooring the big, then print every Integer in between"

Question 3(a) [3 marks]

Explain multiple if-else statement with example.
Answer:
Multiple if-else statements allow testing several conditions in sequence, where each condition is checked

only if the previous conditions are false.

No. 8 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

#include <stdio.h>

int main() {

int marks;

printf ("Enter marks (0-100): ");

scanf("%d", &marks);

if(marks >= 80) {
printf("Grade: A\n");
} else if(marks >= 70) {
printf("Grade: B\n");
} else if(marks >= 60) {
printf("Grade: C\n");
} else if(marks >= 50) {
printf("Grade: D\n");
} else {
printf("Grade: F\n");

return 0;

Diagram:

Yes—»| Grade:

marks >= 807? Yes—» Grade:

No

No

e Sequential testing: Only one block executes

e Efficiency: Stops checking after finding true condition

Mnemonic: "If this THEN that, ELSE IF another THEN something else"

Question 3(b) [4 marks]

State the working of while loop and for loop.

Answer:

No. 9 /28

Yes—»

Grade: C

No

Yes—»

Grade: D

No—»

Grade:

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Loop .
Working
Type
1. Test condition
while 2. If true, execute body
loop 3. Repeat steps 1-2 until
condition is false
1. Execute initialization
once
2. Test condition
for 3. If true, execute body
loop 4, Execute update

statement
5. Repeat steps 2-4 until
condition is false

Comparison:

Syntax

while(condition) {
// statements

}

for(initialization;
condition; update) {
// statements

}

for

Initialization

Use Cases

When number of iterations is
unknown beforehand

When number of iterations is
known beforehand

Condition
True?

Yes No
Execute
End
Body
Update

while

Start

Condition
True?

Ye No
Execut

xecute End
Body

No. 10 / 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

e Entry control: Both check condition before execution

e Components: for loop combines initialization, condition, and update

Mnemonic: "WHILE checks THEN acts, FOR initializes CHECKS acts UPDATES"

Question 3(c) [7 marks]

Write a program to find factorial of a given number.

Answer:

#include <stdio.h>

int main() {
int num, i;

unsigned long long factorial = 1;

// Input a number
printf("Enter a positive integer: ");

scanf("%d", &num);

// Check if the number is negative
if(num < 0) {

printf ("Error: Factorial is not defined for negative numbers.\n");
} else {

// Calculate factorial

for(i = 1; i <= num; i++) {

factorial *= i;
printf("Factorial of %d = %1llu\n", num, factorial);

return 0;

Diagram:

Yes Display error Z\

(Slop\\

_
w/Start\ Input Is number < No Display factorial
\7/
NO\D{ Initialize factorial = H Seti= Yes- factorial = factorial * i

e Data type: unsigned long long for large factorials
e Error handling: Checks for negative input

e Loop implementation: Multiply successive integers

No. 11/ 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Mnemonic: "Factorial Formula: Multiply From One to Number"

Question 3(a OR) [3 marks]

Explain the working of switch-case statement with example.
Answer:

The switch-case statement is a multi-way decision maker that tests the value of an expression against
various case values and executes the matching case block.

#include <stdio.h>

int main() {

int day;

printf ("Enter day number (1-7): ");
scanf("%d", &day);

switch(day) {

case 1:
printf ("Monday\n");
break;

case 2:
printf ("Tuesday\n");
break;

case 3:
printf ("Wednesday\n");
break;

case 4:
printf ("Thursday\n");
break;

case 5:
printf("Friday\n");
break;

case 6:
printf("Saturday\n");
break;

case 7:
printf ("Sunday\n");
break;

default:

printf("Invalid day number\n");

return 0;

Diagram:

No. 12 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

w no match—» Print - Invalid day

match—v|

‘ match—» Print - Tuesday

/

break

match——» —/

match%

e Expression evaluation: Only integer or character types

e Case matching: Executes matching case until break

e Default case: Executes when no case matches

Mnemonic: "SWITCH value, CASE match, BREAK out, DEFAULT rescue"

Question 3(b OR) [4 marks]

Define break and continue keyword.

Answer:
Keyword Definition Purpose Example
) To exit a loop
Terminates the c for(i=1; i<=10; i++) { if(i
)) prematurely
break innermost loop or switch . == 5) break; printf("sd ", i);
.) when a certain
statement immediately . } // Output: 1 2 3 4
condition is met
Skips the rest of the To skip specific c for(i=1; i<=10; i++) { if(i
continue current iteration and iterations without == 5) continue; printf("sd ",
inu
jumps to the next terminating the i); } // Output: 1 2 3 4 6 7 8
iteration of the loop loop 9 10

Behavioral Comparison:

No. 13 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

continue break
Yes No Y:a/s Nlo
Exit Loop

e Scope: Both affect only the innermost loop

e Control transfer: break exits loop, continue jumps to next iteration

Mnemonic: "BREAK leaves the room, CONTINUE skips to the next dance move"

Question 3(c OR) [7 marks]

Write a program to read number of lines (n) from keyboard and print the triangle shown below.

For Example, n=5

3 4
345

T e
NONNDN
w

Answer:

#include <stdio.h>

int main() {

No. 14 / 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

int n, i, 3j;

// Input number of lines
printf ("Enter number of lines: ");
scanf("%d", &n);

// Print the triangle pattern
for(i = 1; i <= n; i++) {
// Print numbers from 1 to i in each row
for(j = 1; j <= 1i; j++) {
printf("sd ", Jj);

}
printf("\n");
}
return 0;

Pattern Visualization:

Row 1: 1

Row 2: 1 2

Row 3: 1 2 3
Row 4: 1 2 3 4
Row 5: 1 2 3 45

Program Flow:

Yes—»> Setj =

e Nested loops: Outer loop for rows, inner loop for columns

e Pattern logic: Row number determines how many numbers to print

toe—yf) f——

o s

e Number sequence: Each row prints 1 to row number

Mnemonic: "Rows decide COUNTer limit, COLumns print ONE to ROW"

Question 4(a) [3 marks]

Explain nested if-else statement with example.

Answer:

Nested if-else statements are if-else constructs placed inside another if or else block, allowing more

complex conditional logic and multiple levels of decision making.

No. 15/ 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

#include <stdio.h>
int main() {
int age;

char hasID;

printf ("Enter age: ");
scanf("%d", &age);

printf("Do you have ID? (Y/N): ");
scanf(" %c", &hasID);

if(age >= 18) {

if(hasID == 'Y' || hasID == 'y') {
printf("You can vote!\n");
} else {
printf("You need ID to vote.\n");
}
} else {

printf("You must be 18 or older to vote.\n");

return 0;

Decision Tree:

Yes

Input age and »_ age >= 187

No—»|

You must be 18 or older to

vote

e Hierarchical conditions: Evaluates conditions in layers
e Indentation: Improves readability of nested structures

e Multi-factor decisions: Combines multiple criteria

Mnemonic: "If INSIDE if, check DEEPER conditions"

Question 4(b) [4 marks]

Describe initialization of one-dimensional array.

Answer:

No. 16 / 28

Yes—»

You can

No—»|

You need ID to vote

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Initialization Synt E | 5 inti
ntax xample escription
Method y P P
Declaration data_type Creates array with specified size,
. . int marks[5];
with size array name[size]; elements have garbage values
Declaration data_type o .
) int ages[4] = {21, Creates and initializes array with
with array name[size] = .
o 19, 25, 32}; specific values
initialization {values};
. data_type L .
Partial int nums[5] = {1, Initializes first elements, rest
o array name[size] =
initialization 2}; become zero
{values};
data type . .
L - int scores[] = {95, Size determined by number of
Size inference array name[] = o
88, 72, 84, 91}; initializers
{values};
Individual array name[index] = . .
marks[0] = 85; Assigns value to specific element
element value;

Array Visualization:

int numbers[5] = {10, 20, 30, 40, 50};

[0] [1] [2] [31] [4] « indices

e Zero-indexing: First element at index 0
e Contiguous memory: Elements stored sequentially

¢ Size limitation: Size must be known at compile time

Mnemonic: "Declare SIZE first, then FILL with values or let COMPILER COUNT"

Question 4(c) [7 marks]

Define Array and write a program to reverse a string.
Answer:
An array is a collection of similar data items stored at contiguous memory locations and accessed using a

common name.

#include <stdio.h>

#include <string.h>
int main() {
char str[100], reversed[100];

int i, j, length;

No. 17 /28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

// Input a string
printf ("Enter a string: ");

gets(str);

// Find the length of string
length = strlen(str);

// Reverse the string

for(i = length - 1, j = 0; i >= 0; i--, Jj++) {

reversed[j] = str[i];
// Add null terminator
reversed[]j] = '\0';

// Display the reversed string

printf("Reversed string: %s\n", reversed);

return 0;

Algorithm Visualization:

0] reversed[0]
/ L reversed[1] k‘
Original: 'HELLO' L reversed[2] Reversed: 'OLLEH'
\ E reversed[3] 7
H reversed[4]

e Character array: Stores string with null terminator

e Two-pointer technique: One for original, one for reversed

No. 18 / 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

e Zero-based indexing: Arrays start at index 0

Mnemonic: "Start from END, place at BEGIN, stop at ZERO"

Question 4(a OR) [3 marks]

Explain do while loop with example
Answer:
The do-while loop is an exit-controlled loop that executes the loop body at least once before checking the

condition.

#include <stdio.h>

int main() {

int num, sum = 0;

do {
printf("Enter a number (0 to stop): ");
scanf("%d", &num);
sum += num;

} while(num != 0);

printf("Sum of all entered numbers: %d\n", sum);

return 0;

Loop Execution Flow:

sum = sum +

Yes

Key Characteristics:

e Execution order: Body first, condition check later
e Guaranteed execution: Loop body always executes at least once

e Termination: Condition evaluated at bottom of loop

Mnemonic: "DO first, ask questions WHILE later"

Question 4(b OR) [4 marks]

Define pointer and describe pointer with example.
Answer:

A pointer is a variable that stores the memory address of another variable.

No. 19/ 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Pointer Concept Description Example

Declaration Data_type *pointer_name; int *ptr;

Initialization Assign address of a variable int num = 10; int *ptr = #
Dereference Access the value at the address printf("sd", *ptr); //Prints10
Address operator Gets address of a variable printf("sp", &num); // Prints address
Null pointer Pointer that points to nothing int *ptr = NULL;

Pointer Visualization:

Memory:

[I] [I 1
&num	1000		sptr	2000
		I		
num	10		ptr	1000
[l | L | |

L > points to address of num

Indirect access: Access variables through their addresses

Memory manipulation: Direct memory access for efficiency

Dynamic memory: Enables allocation/deallocation during runtime

Mnemonic: "Pointers POINT to ADDRESS, STARS dereference to VALUES"

Question 4(c OR) [7 marks]

Define pointer and write a program to exchange two integers using pointer arguments.
Answer:
A pointer is a variable that contains the memory address of another variable, allowing indirect access and

manipulation of data.

#include <stdio.h>

// Function to swap two integers using pointers
void swap(int *a, int *b) {

int temp = *a;

*a = *b;

*b = temp;

int main() {

int numl, num2;

No. 20/ 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

// Input two integers
printf ("Enter first number: ");

scanf("%d", &numl);

printf ("Enter second number: ");

scanf ("%d", &num2);
printf ("Before swapping: numl = %d, num2 = %d\n", numl, num2);

// Call swap function with addresses of numl and num2

swap (&numl, &num2);
printf ("After swapping: numl = %d, num2 = %d\n", numl, num2);

return 0;

Swap Process Visualization:

a points to
numfi

> temp = "a > *a= > *b =temp > Values

Memory Changes:

Before swap:
numl = 5, num2 = 10

a --> numl, b --> num2

Step 1: temp = *a

temp = 5, numl = 5, num2 = 10

Step 2: *a = *Db

temp = 5, numl = 10, num2 = 10

Step 3: *b = temp

temp = 5, numl = 10, num2

1
(6]

After swap:

numl = 10, num2 = 5

¢ Pass by reference: Pointers allow functions to modify original variables
e Temporary variable: Required for swapping without data loss

e Function parameter: Pointer arguments pass addresses

Mnemonic: "Grab by ADDRESS, change the CONTENT, without being PRESENT"

Question 5(a) [3 marks]

No. 21/ 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Write a program to find the numbers which are divisible by 7 in between the numbers 50 and 500.
Answer:
#include <stdio.h>

int main() {

int i, count = 0;
printf ("Numbers divisible by 7 between 50 and 500:\n");
// Find and print numbers divisible by 7
for(i = 50; i <= 500; i++) {
if(i & 7 == 0) {

printf("sd ", i);

count++;

// Print 10 numbers per line for better readability

if(count % 10 == 0)
printf("\n");

printf("\nTotal count: %d\n", count);

return 0;

Algorithm Visualization:

Print i

Yes—»|
count++ \

Yes. Isi% 7 ==07?

No——» i++

Set i =50, count = No—» Print total

¢ Modulo operator: i % 7 == 0 checks divisibility
e Formatting output: Line breaks for readability

e Counter variable: Tracks how many numbers found

Mnemonic: "DIVide by SEVEN, ZERO remainder wins"

Question 5(b) [4 marks]

No. 22 / 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Write a program which reads an integer from keyboard and prints whether given number is odd or
even.

Answer:

#include <stdio.h>

int main() {

int number;

// Input an integer
printf("Enter an integer: ");

scanf("%d", &number);

// Check if the number is even or odd
if (number % 2 == 0) {

printf("%d is an even number.\n", number);
} else {

printf("%d is an odd number.\n", number);

return 0;

Decision Logic:

Yes——7/ Print "number is /R‘
/ Input Is number % 2 == 07?

No~—7/ Print "number is

Modulo Division Table for Small Numbers:

Number Number % 2 Even/Odd
0 0 Even
1 1 Odd
2 0 Even
3 1 Odd
4 0 Even

No. 23 /28

e Modulo test: Even numbers have remainder 0 when divided by 2

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

e Binary representation: Last bit is O for even, 1 for odd

e Simple algorithm: Works for all integers including negatives

Mnemonic: "EVEN with ZERO end, ODD with ONE bend"

Question 5(c) [7 marks]

Define structure? Explain how it differs from array? Develop a structure named book to save
following information about books. Book title, Name of author, Price and Number of pages.

Answer:

A structure is a user-defined data type that allows grouping of variables of different data types under a

single name.

Difference between Structure and Array:

Feature

Data type

Access

Memory allocation
Size

Declaration

Purpose

Structure

Can store different data types

Members accessed using dot (.) operator
Memory may not be contiguous

Size can vary for each member

Uses struct keyword

Organizes related heterogeneous data

Book Structure Program:

#include <stdio.h>

#include <string.h>

// Define the structure

struct Book {

char title[100];
char author[50];

float price;
int pages;

}i

int main() {

// Declare a variable of type struct Book

struct Book myBook;

// Assign values to the structure members

strcpy(myBook.title, "C Programming");

strcpy (myBook.author, "Dennis Ritchie");

No. 24 / 28

Array

Stores elements of same data type
Elements accessed using index []
Memory is always contiguous

Size is same for all elements

Uses square brackets []

Organizes homogeneous data

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

myBook.price 350.50;

285;

myBook.pages

// Display book information
printf("Book Details:\n");
printf("Title: %s\n", myBook.title);
printf("Author: %s\n", myBook.author);
printf("Price: %.2f\n", myBook.price);
printf("Pages: %d\n", myBook.pages);

return 0;

Structure Visualization:

struct Book myBook

[I

| Member | Value |
| | I
| title | "C Programming" |
| | I

author "Dennis Ritchie"

price	350.50
	I
pages	285

Structure definition: Creates template for data

Member access: Use dot operator (structure.member)

String handling: Uses string functions for character arrays

Mnemonic: "STRUCTURE groups DIFFERENT, ARRAY repeats SAME"

Question 5(a OR) [3 marks]

Write a program which reads a real number from keyboard and prints a smallest integer greater
than it.

Answer:

#include <stdio.h>

#include <math.h>
int main() {
float number;

int result;

// Input a real number

printf ("Enter a real number: ");

No. 25/ 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

scanf("%$f", &number);

// Find smallest integer greater than the input

result = ceil (number);

// Display the result

printf("Smallest integer greater than %.2f is %d\n", number, result);

return 0;

Function Behavior:

/ Input real /L—v Apply ceil function ‘7/ Display /

Examples of ceil() function:

e Math function: ceil() rounds up to next integer
e Result type: Returns smallest integer greater than input

e Handling edge cases: Works with negative numbers

Mnemonic: "CEILING function, UP we go, NEXT integer we show"

Question 5(b OR) [4 marks]

Write a program which reads character from keyboard and prints its ASCII value.
Answer:
#include <stdio.h>

int main() {

char ch;

// Input a character

printf ("Enter a character: ");
scanf("%c", &ch);

// Display ASCII value of the character

printf("ASCII value of '%c' is %d\n", ch, ch);

No. 26 / 28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

return 0;

Program Visualization:

Print character and its

Input charact
/ NPt chatacter ASCII value

ASCIl Table Sample:

Character | ASCII Value

‘A’ | 65
‘a' | 97
0" | 48
v | 32

e Character storage: Characters stored as integers in memory
e Type conversion: Automatic conversion from char to int

e Extended ASCII: Values from 0 to 255 for 8-bit characters

Mnemonic: "CHARS have NUMBERS underneath, PRINT shows BOTH sides"

Question 5(c OR) [7 marks]

Define function? Explain its advantage. Write function to calculate the square of a given integer
number.

Answer:

A function is a self-contained block of code designed to perform a specific task. It takes input, processes it,
and returns an output.

Advantages of Functions:

Advantage Description

Code reusability Write once, use many times

Modularity Break complex problems into manageable parts
Maintainability Easier to debug and modify isolated code
Abstraction Hide implementation details

Readability Makes code more organized and understandable
Scope control Variables local to functions reduce naming conflicts

No. 27 [28

Programming in C (4331105) - Winter 2023 Solution by Milav Dabgar

Program with Square Function:

#include <stdio.h>
// Function to calculate square of an integer

int square(int num) {

return num * num;
int main() {
int number, result;
// Input an integer
printf("Enter an integer: ");

scanf ("%d", &number);

// Call the square function

result = square(number);

// Display the result
printf("Square of %d is %d\n", number, result);

return 0;

Function Flow:

main ——call with number—», square ——return num * num—v| main —— display —» End

Function Components:

Return Type Function Name Parameters
0 & a
int square (int num)

3
Function Body

{

return num * num; « Function Logic

}

e Function prototype: Declares function signature
e Parameters: Input values passed to function

e Return value: Output or result from function

Mnemonic: "Functions ENCAPSULATE tasks, take INPUTS, give OUTPUTS"

No. 28 / 28

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

