Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Define keyword. List any four keywords for C language.

Answer:
A keyword is a predefined, reserved word in C that has special meaning to the compiler and cannot be used
as an identifier.

Table: Common C Keywords

Keyword Purpose

int Integer data type

float Floating-point data type
char Character data type

if Conditional statement

for Loop statement

while Loop statement

void Return type/parameter
return Return value from function

e Reserved words: Keywords cannot be used as variable names
¢ Pre-defined: They have fixed meaning in the language

e Case-sensitive: All keywords must be in lowercase

Mnemonic: "If Vold FoR Whlle" (first letters of important keywords)

Question 1(b) [4 marks]

Explain rules for naming a variable.

Answer:
Variables in C must follow specific naming rules to be valid identifiers.

Table: Variable Naming Rules in C

No. 1/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

L. Valid Invalid
Rule Description
Example Example
First character Must be a letter or underscore age, _count Tvalue
Subsequent o user_1,
Letters, digits, or underscores user@1
characters total99

Uppercase and lowercase are

Case sensitivity Value # value -

different
Keywords Cannot use reserved keywords counter int
Should be meaningful but not too
Length studentMarks sm
long
Special characters Not allowed firstName first-name

e Descriptive names: Use meaningful names that indicate purpose
e Consistent style: Follow a consistent naming convention

e No spaces: Use underscores or camelCase instead

Mnemonic: "FLASKS" (First Letter, Letters/digits, Avoid keywords, Sensitive case, Keep meaningful, Skip
special chars)

Question 1(c) [7 marks]

Define flowchart. Draw flowchart to find minimum of three integer numbers N1, N2 and N3.

Answer:
A flowchart is a graphical representation of an algorithm showing the steps as boxes and their order by
connecting them with arrows.

Diagram:
Yes—»| min = Yes—» min remains same
(Start nput N1, N2, n
/S I N1, N: End
No—» min = No———» min =

e Symbols used: Oval (start/end), Parallelogram (input/output), Diamond (decision), Rectangle (process)
e Decision points: Compare values systematically

e Logical flow: Arrows show the sequence of operations

Mnemonic: "Start-Input-Compare-Output-End" (SICOE)

Question 1(c) OR [7 marks]

Define algorithm. Write an algorithm to find minimum of three integer numbers N1, N2 and N3.

No. 2 /27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Answer:
An algorithm is a step-by-step procedure or finite set of well-defined instructions to solve a particular
problem.

Algorithm to find minimum of three numbers:

Step 1: Start

Step 2: Input three numbers N1, N2, and N3

Step 3: Set min = N1 (assume first number is minimum)
Step 4: If N2 < min, then set min = N2

Step 5: If N3 < min, then set min = N3

Step 6: Output min as the minimum number

Step 7: End

Table: Algorithm Characteristics

Characteristic Description

Finiteness Algorithm must terminate after finite steps
Definiteness Each step must be precisely defined

Input Algorithm takes zero or more inputs
Output Algorithm produces one or more outputs
Effectiveness Steps must be simple and executable

e Sequential steps: Follows a logical order
e Comparative approach: Systematically finds minimum

e Simplicity: Easy to understand and implement

Mnemonic: "FIDEO" (Finiteness, Input, Definiteness, Effectiveness, Output)

Question 2(a) [3 marks]

Differentiate gets() and puts().

Answer:
gets() and puts() are standard library functions in C for input and output operations with strings.

Table: Comparison of gets() and puts()

No. 3 /27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Feature gets() puts()

Purpose Reads string from stdin Writes string to stdout

Prototype char *gets(char *str) int puts(const char *str)

Behavior Reads until newline Adds newline automatically

Return value Rejturns str on success, NULL on Returns non-negative on success, EOF on
failure error

Safety Unsafe (buffer overflow risk) Safe

Recommended No (deprecated) Yes

e Input/Output: gets() for input, puts() for output
e Termination: gets() stops at newline, puts() adds newline

e Security: gets() has no buffer limit check

Mnemonic: "Gets In, Puts Out" (gets reads in, puts writes out)

Question 2(b) [4 marks]

Develop a C program to find whether the entered number is even or odd using conditional operator.

Answer:
This program uses the conditional operator to check if a number is even or odd.

#include <stdio.h>

int main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

// Using conditional operator to check even or odd

(num % 2 == 0) ? printf("%d is even\n", num) : printf("%d is odd\n", num);

return 0;

Diagram:

No. 4 [27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

True——7/ Output "num is

num % 2 == 07?

False\—7/ Output "num is

/R‘
e

e Conditional operator: ?: is a ternary operator

e Modulus operation: % gives remainder after division

e Test condition: num % 2 == 0 checks for even number

Mnemonic: "REMinder 0 = Even" (Remainder 0 means Even)

Question 2(c) [7 marks]

Explain logical & relational operators with examples.

Answer:

Logical and relational operators are used to create conditions and make decisions in C programs.

Table: Relational Operators

Operator Meaning

== Equal to

I= Not equal to

> Greater than

< Less than

>= Greater than or equal to
&= Less than or equal to

Table: Logical Operators

Operator Meaning
&& Logical AND
| | Logical OR

! Logical NOT

Code Example:

Example
5 ==
51=3

7>3

Example
(5>3) && (8>5)
(5>7) | | (3<6)

(5>7)

No. 5/ 27

Result
true (1)
true (1)
true (1)
true (1)
true (1)

true (1)

Result
true (1)
true (1)

true (1)

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

int age = 20;

int score = 75;

// Using both relational and logical operators
if ((age >= 18) && (score > 70)) {
printf("Eligible");

e Comparison: Relational operators compare values
e Combining conditions: Logical operators connect multiple conditions

e Truth value: All operators return 1 (true) or 0 (false)

Mnemonic: "CORNL" (Compare with relational, OR/AND/NOT with logical)

Question 2(a) OR [3 marks]

Considering precedence of operators, write down each step of evaluation and final answer if
expression 16 +(216/((3+6)*12))-10 is evaluated.

Answer:
Let's evaluate the expression 16 + (216 /((3+6)*12))- 10 step by step following operator precedence.

Table: Step-by-Step Evaluation

Step Operation Expression after this step
1 Calculate (3 + 6) 16+(216/(9%12))-10
2 Calculate (9 * 12) 16+(216/108)-10

3 Calculate (216 / 108) 16+2-10

4 Calculate 16 + 2 18-10

5 Calculate 18- 10 8

Final Answer: 8

Diagram:

16+ (216/((3+6)*12)

T > 16+(216/(9%12))-10 —» 16+ (216 /108) - > 16+2-10 —» 18-10 —» 8

e Parentheses first: Innermost parentheses evaluated first
e Multiplication before division: Calculate from left to right

e Addition and subtraction last: From left to right

Mnemonic: "PEMDAS" (Parentheses, Exponents, Multiplication/Division, Addition/Subtraction)

No. 6 /27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Question 2(b) OR [4 marks]

Write a C program to find circumference and area of a circle.

Answer:
This program calculates the area and circumference of a circle based on its radius.

#include <stdio.h>
#define PI 3.14159

int main() {

float radius, area, circumference;

printf ("Enter the radius of circle: ");

scanf("%f", &radius);
// Calculate area and circumference
area = PI * radius * radius;

circumference = 2 * PI * radius;

printf("Area of circle = %.2f square units\n", area);

printf("Circumference of circle = %.2f units\n", circumference);

return 0;

Diagram:

) . circumference =2 * Pl * Output area and
@ M area = Pl * radius * radius)) P End
radius circumference

e Formula: Area =1t x r2 and Circumference =2 x r
e Constant definition: Using #define for PI

e Float variables: For decimal precision

Mnemonic: "PIR2" for area, "2PIR" for circumference

Question 2(c) OR [7 marks]

Explain arithmetic & bit-wise operators with examples.

Answer:
Arithmetic operators perform mathematical operations while bit-wise operators manipulate individual bits
of integers.

Table: Arithmetic Operators

No. 7 /27

Operator

+

%

++

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Description

Addition

Subtraction
Multiplication
Division

Modulus (Remainder)
Increment

Decrement

Table: Bitwise Operators

Operator

&

<<

>>

Code Example:

int a = 5,

printf("a + b

Description
Bitwise AND
Bitwise OR
Bitwise XOR
Bitwise NOT
Left Shift

Right Shift

= 3;

¢d\n", a + b);

printf("a & b = %d\n", a & b);

printf("a << 1

= %d\n", a << 1);

Example (binary)
5(101) &3 (011)
5(101) | 3(011)

5(101)~3(011)

Example
5+3
7-2
4*3
10/3
10% 3

a++

~5(101)

5<<1

5>>1

// 8
// 1
// 10

Result

8

5

12

3 (integer division)

1

Adds 1 after using value

Subtracts 1 before using value

Result

1(001)

7(111)

6(110)

-6 (depends on bits)
10 (1010)

2(10)

e Mathematical operations: Arithmetic operators for calculations

e Bit manipulation: Bitwise operators work at binary level

e Efficiency: Bitwise operations are faster for certain tasks

Mnemonic: "SAME BARON" (Subtraction Addition Multiplication, Bitwise AND/OR/NOT)

Question 3(a) [3 marks]

Explain the use of 'go to' statement with example.

Answer:

The goto statement is used to transfer program control unconditionally to a labeled statement.

No. 8 / 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

#include <stdio.h>

int main() {

int num, sum = 0;

printf("Enter a positive number: ");

scanf("%d", &num);
if (num <= 0) {

goto error;

sum = num * (num + 1) / 2;
printf("Sum of first %d numbers = %d\n", num, sum);

goto end;

error:

printf("Error: Please enter a positive number!\n");

end:

return 0;

Diagram:

»

Yes
/

¢ Label declaration: Labels end with colon (:)
e Jump statement: goto transfers control to label

e Caution: Excessive use creates "spaghetti code"

Mnemonic: "JUMPing LABEL" (Jump to a labeled statement)

Question 3(b) [4 marks]

Output error message /L\

The marks obtained by the student in 5 different subjects are input through keyboard. The student
gets grade as per following rules: Percentage above or equal to 90- Grade A. Percentage between 80
and 89- Grade B. Percentage between 70 and 79-Grade C. Percentage between 60 and 69-Grade D.

Percentage between 50 and 59-Grade E. Percentage less than 50- Grade F. Write a C program to

display the grade obtained by the student.

Answer:
This program calculates the grade based on the average marks in 5 subjects.

#include <stdio.h>

No. 9 /27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

int main() {
int marks[5], total = 0, i;
float percentage;

char grade;

// Input marks for 5 subjects

for (i = 0; 1 < 5; i++) {
printf("Enter marks for subject %d (out of 100): ", i+1l);
scanf ("%d", &marks[i]);

total += marks[i];

// Calculate percentage

percentage = total / 5.0;

// Determine grade

if (percentage >= 90)

grade = 'A';

else if (percentage >= 80)
grade = 'B';

else if (percentage >= 70)
grade = 'C';

else if (percentage >= 60)
grade = 'D';

else if (percentage >= 50)
grade = 'E';

else
grade = 'F';

printf ("Percentage: %.2f%%\n", percentage);

printf("Grade: %c\n", grade);

return 0;

Table: Grading Criteria

Percentage Range Grade
>90 A
80-89 B
70-79 C
60-69 D
50-59 E
<50 F

No. 10 / 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

e Input array: Stores marks of 5 subjects
e Percentage calculation: Sum divided by number of subjects

e Grade determination: Using if-else ladder

Mnemonic: "ABCDEF-90-80-70-60-50" (Grades with their percentage thresholds)

Question 3(c) [7 marks]

Draw flowchart and explain nested if-else with example.

Answer:
Nested if-else is a control structure where an if or else statement contains another if-else statement within
it.

Diagram:

No Output "Not eligible: Age
criteria not met"

/ o e
Ye utput !E|I§.3Ib|e for End
admission"
Yes:
No Output "Not eligible: Score
criteria not met"

Input age, score

Code Example:

#include <stdio.h>

int main() {

int age, score;

printf ("Enter age: ");
scanf("%d", &age);
printf ("Enter score: ");

scanf("%d", &score);

if (age >= 18) {
if (score >= 60) {
printf("Eligible for admission");
} else {
printf("Not eligible: Score criteria not met");
}
} else {

printf("Not eligible: Age criteria not met");

return 0;

No. 11/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

e Multiple conditions: Tests several conditions in sequence
e Hierarchical decision: Inner condition only evaluated if outer is true

e Indentation: Proper indentation helps in understanding structure

Mnemonic: "CONE" (Check Outer, Nest Evaluation inside)

Question 3(a) OR [3 marks]

Explain the use of continue and break statement.

Answer:
The break and continue statements control the flow of loops in different ways.

Table: Comparison of break and continue

Feature break continue

Purpose Exits the loop immediately Skips current iteration

Effect on , . .

- Terminates completely Proceeds to next iteration

Applicable

, PP switch, for, while, do-while for, while, do-while

in

Usage When condition met and no more iterations When current iteration should be
& needed skipped

Example with break:

for (int 1 = 1; i <= 10; i++) {
if (i == 5)
break; // Exit loop when i equals 5
printf("sd ", i); // Outputs: 1 2 3 4

Example with continue:

for (int 1 = 1; i <= 10; i++) {
if (i 8 2 == 0)
continue; // Skip even numbers
printf("sd ", i); // Outputs: 1 3 5 7 9

e Loop control: Both used to manage loop execution

Break exits: Completely stops the loop

e Continue skips: Only skips current iteration

Mnemonic: "BEC" (Break Exits Completely, Continue only current)

No. 12 [27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Question 3(b) OR [4 marks]

Write a program using for loop to print this output:

2 3
2 3 4

e

Answer:
This program uses nested for loops to print the pattern of numbers.

#include <stdio.h>

int main() {

int i, J;

// Outer loop for rows (1 to 4)
for (i = 1; 1 <= 4; i++) {
// Inner loop for columns (1 to i)
for (j = 1; j <= i; j++) {
printf("sd ", Jj);

}
printf("\n"); // Move to next line after each row
}
return 0;
}
Diagram:

i -
. j++
Yes—»|] = 1

-
- oo
@ =1

i++

e Nested loops: Outer loop for rows, inner for columns
e Dynamic limit: Inner loop runs j from 1 to current i

¢ Incremental pattern: Each row has one more number

Mnemonic: "RICI" (Row Increases, Column Increases based on row number)

Question 3(c) OR [7 marks]

No. 13/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Draw flowchart and explain switch statement with example.

Answer:
The switch statement is a multi-way decision maker that tests a variable against various case values.

Diagram:

case /—7/ Output "Option 1

case —7/ Output "Option 2 /R‘
case ~—7/ Output "Option 3 /L/'

defaull¥7/ Output "Invalid

Code Example:

#include <stdio.h>

int main() {

int choice;

printf("Menu:\n");

printf("1l. Add\n");

printf("2. Subtract\n");

printf("3. Multiply\n");

printf ("Enter your choice (1-3): ");

scanf("%d", &choice);

switch (choice) {

case 1l:
printf("Addition selected\n");
break;

case 2:
printf("Subtraction selected\n");
break;

case 3:
printf("Multiplication selected\n");
break;

default:

printf("Invalid choice\n");

return 0;

No. 14 [27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Multiple cases: Tests one variable against multiple values

Break statement: Prevents fall-through to next case

Default case: Handles values not matching any case

Case order: Can be in any order, default usually last

Mnemonic: "CASED" (Check All Switch Expression's Destinations)

Question 4(a) [3 marks]

Develop a C program to convert temperature from Celsius to Fahrenheit using formula fahrenheit=
((celsius*9)/5)+32.

Answer:
This program converts a temperature value from Celsius to Fahrenheit.

#include <stdio.h>

int main() {

float celsius, fahrenheit;

printf ("Enter temperature in Celsius: ");

scanf("%f", &celsius);

// Convert Celsius to Fahrenheit
fahrenheit = ((celsius * 9) / 5) + 32;

printf("%.2f Celsius = %.2f Fahrenheit\n", celsius, fahrenheit);

return 0;

Diagram:

fahrenheit = ((celsius * 9) / - Output celsius and @
5) + 32 / fahrenheit -

e Formula:F=((Cx9)+5)+32
e Float variables: For decimal precision

e Formatted output: Using %.2f for two decimal places

Mnemonic: "C95+32=F" (Celsius x 9 + 5 + 32 = Fahrenheit)

Question 4(b) [4 marks]

What is pointer? Explain with example.

Answer:
A pointer is a variable that stores the memory address of another variable.

No. 15/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Diagram:

Memory:
| ptr |----=>| var |
Address Value: 10

contains
0x2000

Code Example:

#include <stdio.h>
int main() {
int var = 10;
int *ptr;

ptr = &var;

printf("value of var: %d\n", var);

printf("Address of var: %p\n", &var);

printf("value of ptr: %p\n", ptr);

printf("value at address stored in ptr:

// Modify value using pointer
*ptr = 20;

printf("New value of var: %d\n", var);

return 0;

Table: Pointer Operations

// Regular variable

// Pointer variable

// Store address of var in ptr

// Output: 10
// Output: memory address

// Output: same memory address

¢d\n", *ptr); // Output: 10

// Output: 20

Operation Symbol Description Example
Address-of & Gets address of variable &var
Dereference * Accesses value at address *ptr
Declaration * Creates pointer variable int *ptr;
Assignment = Assigns address to pointer ptr = &var;

e Memory address: Pointer stores location, not value

¢ Indirection: Access value indirectly using address

¢ Memory manipulation: Allows dynamic memory access

Mnemonic: "ADA" (Address Dereferencing Access)

No. 16 / 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Question 4(c) [7 marks]

Draw flowchart and explain do-while loop with example.

Answer:
The do-while loop is a post-test loop that executes its body at least once before checking the condition.

Diagram:
@— 7 Initialize counter i =1 7 Execute loop body: Print No

—
Yes:

Code Example:

#include <stdio.h>

int main() {

int i = 1;

do {
printf("%sd ", 1i);
i++;

} while (i <= 5); // Condition checked after first execution
// Output: 1 2 3 4 5

return 0;

Table: Characteristics of do-while Loop

Characteristic Description

Execution order Body first, then condition

Minimum iterations At least one

Condition check At the end of loop

Termination When condition becomes false
Syntax do { statements; } while (condition);

* Post-test loop: Condition evaluated after loop body
e Guaranteed execution: Loop body always runs at least once

e Semicolon: Required after while condition

Mnemonic: "DECAT" (Do Execute Check After That)

No. 17 [27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Question 4(a) OR [3 marks]

Develop a C program to find area of a triangle (2 * base * height)?

Answer:
This program calculates the area of a triangle using the formula Area = % x base x height.

#include <stdio.h>

int main() {

float base, height, area;
printf("Enter base of triangle: ");
scanf("%f", &base);

printf ("Enter height of triangle: ");

scanf("%f", &height);

// Calculate area

area = 0.5 * base * height;
printf("Area of triangle = %.2f square units\n", area);

return 0;

Diagram:

Input base, /

e Formula: Area =% x base x height

\ 4

area = 0.5 * base * Output area @

¢ Float variables: For decimal precision

e User input: Gets base and height from user

Mnemonic: "Half-BH" (Half times Base times Height)

Question 4(b) OR [4 marks]

Explain declaration and initialization of pointer.

Answer:
Pointer declaration and initialization involve creating a pointer variable and assigning it a memory address.

Table: Pointer Declaration and Initialization

No. 18 [27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Operation Syntax Example
Declaration data_type *pointer_name; int *ptr;
Initialization pointer_name = &variable; ptr = #
Combined dataTtype *pointer_name = int *ptr =
&variable; #
ptr =

Null pointer pointer_name = NULL;

NULL;

Code Example:

#include <stdio.h>

int main() {

// Declaration

int *ptrl;

// Declaration and initialization together
int num = 10;

int *ptr2 = #

// Initialization with NULL
int *ptr3 = NULL;

printf("value at address ptr2: %d\n", *ptr2); // Output:

return 0;

Asterisk syntax: * used in declaration to create pointer
Address operator: & gets address of variable
NULL initialization: Safe practice to avoid wild pointers

Pointer type: Must match the data type it points to

Mnemonic: "DINA" (Declare, Initialize with NULL or Address)

Question 4(c) OR [7 marks]

Draw flowchart and explain while loop with example.

Answer:
The while loop is a pre-test loop that executes its body repeatedly as long as the condition remains true.

Diagram:

No. 19/ 27

Explanation
Creates pointer to int
Assigns address of num to ptr

Declares and initializes
together

Points to nothing (safe
practice)

10

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Yes/—7/ Execute loop body: Print

Increment i:
Initialize counter i =1 No

Code Example:

#include <stdio.h>

int main() {

int i = 1;

while (i <= 5) { // Condition checked before each execution
printf("%d ", 1i);
i++;

// Output: 1 2 3 4 5

return 0;

Table: Characteristics of while Loop

Characteristic Description

Execution order Condition first, then body
Minimum iterations Zero (if condition initially false)
Condition check At the beginning of loop
Termination When condition becomes false
Syntax while (condition) { statements; }

Pre-test loop: Condition evaluated before loop body

Zero iterations possible: Body may never execute if condition initially false

Loop variable: Must be initialized before loop

Infinite loop: Occurs if condition never becomes false

Mnemonic: "CELT" (Check, Execute, Loop, Terminate)

Question 5(a) [3 marks]

Build a structure to store book information: book_no, book_title, book_author, book_price

No. 20/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Answer:
This program creates a structure to store book information with the specified fields.

#include <stdio.h>

#include <string.h>

// Define structure for book information
struct Book {

int book_no;

char book title[50];

char book_author([30];

float book_ price;

}i

int main() {
// Declare a variable of Book structure
struct Book bookl;

// Assign values to structure members
bookl.book _no = 101;

strcpy(bookl.book title, "Programming in C");
strcpy (bookl.book author, "Dennis Ritchie");
bookl.book price = 450.75;

// Display book information

printf("Book No: %d\n", bookl.book no);
printf("Title: %s\n", bookl.book title);
printf("Author: %s\n", bookl.book author);
printf("Price: Rs. %.2f\n", bookl.book price);

return 0;

Diagram:

| int book no |
| char book title |
| char book author|
|

float book price|

e Structure definition: Uses struct keyword to define composite data type
e Member access: Using dot (.) operator to access members

e String copying: strcpy() for character arrays

Mnemonic: "NTAP" (Number, Title, Author, Price)

No. 21/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Question 5(b) [4 marks]

Explain following functions with example. (1) sqrt() (2) pow() (3) strlen() (4) strcpy()

Answer:

These are standard library functions in C, used for mathematical calculations and string manipulations.

Table: Library Functions

. Header
Function File Purpose Example Output
sqrt() math.h Square root of a number sqrt(16) 4.0
pow() math.h Raises number to power pow(2, 3) 8.0
strlen() string.h Length of string strlen("Hello") 5
Copies one string to strcpy(dest, dest contains
strcpy() string.h P E PY(
another "Hello") "Hello"

Code Example:

#include <stdio.h>
#include <math.h>

#include <string.h>

int main() {
// sqrt() and pow() examples
printf ("Square root of 25: %.2f\n", sqrt(25));
printf ("2 raised to power 4: %.2f\n", pow(2, 4));

// strlen() example
char str[] = "C Programming";

printf("Length of string: %d\n", strlen(str));

// strcpy() example

char source[] = "Hello";

char destination[10];

strcpy(destination, source);

printf("Copied string: %s\n", destination);

return 0;

Math functions: sqrt() and pow() for mathematical calculations

String functions: strlen() and strcpy() for string manipulations

Header files: Required to use these functions

Return types: sqrt() and pow() return double, strlen() returns size_t

No. 22 / 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

Mnemonic: "MPSL" (Math Power and String Length)

Question 5(c) [7 marks]

Explain arrays and array initialization. Give example.

Answer:

An array is a collection of elements of the same data type stored in contiguous memory locations.

Table: Array Types and Initialization Methods

Array Type Declaration Initialization at Declaration
Integer int arr[5]; int arr[5] = {10, 20, 30, 40, 50};
Character char str[10]; char str[10] = "Hello";

Float float values[3]; float values[3] = {1.5, 2.5, 3.5};
Partial int nums[5]; int nums[5] = {1, 2};

Size inference - int nums[] ={1, 2, 3};

Code Example:

#include <stdio.h>

int main() {
// Array declaration and initialization
int numbers[5] = {10, 20, 30, 40, 50};

// Access and display array elements

printf ("Array elements: ");

for (int 1 = 0; i < 5; i++) {
printf("%d ", numbers[i]);

}

printf("\n");

// Modifying array element
numbers[2] = 35;

printf("Modified element at index 2: %d\n", numbers[2]);

return 0;

Diagram:

No. 23/ 27

Separate Initialization
arr[0] =10; arr[1] = 20; etc.
strcpy(str, "Hello");
values[0] = 1.5; etc.
Remaining setto 0

Size determined by initializer

Array: numbers[5]

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

e Zero-based indexing: First element at index 0

e Contiguous memory: Elements stored adjacently

¢ Fixed size: Size defined at compile time

e Element access: Using index with square brackets

Mnemonic: "DICE" (Declaration, Initialization, Contiguous storage, Element access)

Question 5(a) OR [3 marks]

Explain declaration of structure with example.

Answer:

Structure declaration in C involves defining a new data type that combines different data types under a

single name.

Table: Structure Declaration Methods

Method

Basic
declaration

With variables

Without tag

Typedef

Code Example:

#include <stdio.h>

Syntax

struct tag_name { members; };

struct tag_name { members; }
variables;

struct { members; } variables;

typedef struct { members; } alias;

// Structure declaration

struct Student {

int id;

char name[30];

float percentage;

}i

int main() {

// Declaring structure variable
struct Student sl;

No. 24 [27

Example

struct Student { int id; char name[20];
h

struct Point{intx, y; } p1, p2;

struct { float real, imag; } c1;

typedef struct { int h, w; } Rectangle;

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

// Assigning values to structure members
sl.id = 101;
strcpy(sl.name, "John");

sl.percentage = 85.5;

// Displaying structure members
printf("Student ID: %d\n", sl.id);
printf("Name: %s\n", sl.name);

printf ("Percentage: %.2f%%\n", sl.percentage);

return 0;

Structure keyword: struct used to define new data type

Member access: . (dot) operator to access members

Heterogeneous data: Can combine different data types

Custom data type: Creates user-defined data type

Mnemonic: "SMUVT" (Structure Mostly Uses Various Types)

Question 5(b) OR [4 marks]

What is user defined function? Explain with example.

Answer:
A user-defined function is a block of code written by the programmer to perform a specific task, which can
be called from other parts of the program.

Table: Function Components

Component Description Example

Return type Data type returned by function int, float, void
Function name Identifier for the function add, findMax
Parameters Input values in parentheses (inta, int b)
Function body Code inside curly braces {returna+Db;}
Function call Invoking the function result = add(5, 3);

Code Example:

#include <stdio.h>

// User-defined function declaration

int findMax(int a, int b);

No. 25/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

int main() {

int numl = 10, num2 = 20, max;

// Function call

max = findMax(numl, num2);
printf("Maximum between %d and %d is %d\n", numl, num2, max);

return 0;

// Function definition
int findMax(int a, int b) {
// Function body
if (a > b)
return a;
else

return b;

Diagram:

main

™

calls with numf1, returns maximum

findMax function

e Modular code: Break large program into smaller parts
e Reusability: Call function multiple times from different places
e Declaration vs Definition: Declaration tells compiler about function, definition contains actual code

e Parameters: Pass values to function when calling

Mnemonic: "CDRP" (Create, Define, Return, Pass)

Question 5(c) OR [7 marks]

Develop a C program to arrange elements of an array of 10 numbers in ascending order.

Answer:
This program sorts an array of 10 integers in ascending order using bubble sort algorithm.

#include <stdio.h>

No. 26 [/ 27

Programming In C (4331105) - Summer 2024 Solution by Milav Dabgar

int main() {

int arr[10], i, j, temp;

// Input array elements
printf("Enter 10 integers: \n");
for (i = 0; i < 10; i++) {

scanf("%d", &arr[i]);

// Bubble sort algorithm for ascending order
for (i = 0; 1 < 9; i++) {
for (j = 0; j < 9 - 1i; j++) {
if (arr[j] > arr[]j + 1]) {
// Swap if current element is greater than next
temp = arr[j];
arr[j] = arr[]j + 1];

arr[j + 1] = temp;

// Display sorted array
printf("Array in ascending order: \n");
for (i = 0; i < 10; i++) {

printf("sd ", arr[i]);

return 0;

Diagram:
N
Yes-
Yes Swap arrfj] and
No,
w/ét;\>—z Input 10 arra)
>t P y

Bubble sort: Compare adjacent elements and swap if needed

Nested loops: Outer loop for passes, inner loop for comparisons

Optimization: Each pass fixes at least one element, so inner loop runs fewer times

e Temporary variable: Used for swapping elements

Mnemonic: "BSCOT" (Bubble Sort Compares and Orders Things)

No. 27 [27

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

