Seat No.:	Enrolment No.
3Cat 110	Emoment No

GUJARAT TECHNOLOGICAL UNIVERSITY

 $Diploma\ Engineering-SEMESTER-3\ (NEW)-EXAMINATION-Summer-2023$

Subject Code: 4331101 Date: 18-07-2023

Subject Name: Electronic Circuits & Networks

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.

			Mark
Q.1	(a)	Define (i) Node (ii) Branch and (iii) Loop for electronic network.	03
	(a)	ઇલેક્ટ્રોનીક નેટવર્ક માટે વ્યાખ્યા આપી. (i) નોડ (ii) બ્રાંય (iii) લૂપ	03
	(b)	Three resistors of 20 Ω , 30 Ω and 50 Ω are connected in parallel across 60 V supply. Find	04
		(i) Current flowing through each resistor and Total current (ii) Equivalent Resistance	
	(b)	20 Ω, 30 Ω અને 50 Ω નાં રેઝીસ્ટર 60 V નાં સપ્લાય સાથે પેરેલલમાં જોડાયેલા છે. તો (i) દરેક રેઝીસ્ટરમાંથી પસાર થતો કરંટ તથા કુલ કરંટ (ii) ઇક્વીવેલન્ટ રેઝીસ્ટર શોધો.	04
	(c)	Explain Series and Parallel connection for Capacitors	07
	(c)	કેપેસીટર માટે સિરિઝ અને પેરેલલ જોડાણ સમજાવો.	07
		OR	
	(c)	Explain Series and Parallel connection for Inductors.	07
	(c)	ઇન્ડક્ટર માટે સિરિઝ અને પેરેલલ જોડાણ સમજાવો.	07
Q.2	(a)	Define (i) Transform impedance, (ii) Driving point impedance, (iii) Transfer impedance.	03
	(a)	વ્યાખ્યા આપો. (i) ટ્રાન્સફોર્મ ઇમ્પીડન્સ, (ii) ડ્રાઇવિંગ પોઇન્ટ ઇમ્પીડન્સ, (iii) ટાન્સફર ઇમ્પીડન્સ.	03
	(b)	^ `	04
	(b)	30, 50 અને 90 ohms ના રેઝીસ્ટર સ્ટારમાં કનેકટ કરેલા છે. ડેલ્ટા કનેક્શનનાં ઇક્વીવેલન્ટ રેઝીસ્ટર શોધો.	04
	(c)	Explain π network.	07
	(c)		07
		OR	
Q.2	(a)	List the types of network.	03
	(a)	નેટવર્કનાં પ્રકારો જણાવો.	03
	(b)	Three resistances of 40, 60 and 80 ohms are connected in delta. Find equivalent resistances in star connection.	04
	(b)	40, 60 અને 80 ohms ના રેઝીસ્ટર ડેલ્ટામાં કનેક્ટ કરેલા છે. સ્ટાર કનેક્શનનાં ઇક્વીવેલન્ટ રેઝીસ્ટર શોધો	04

	(c)	Explain characteristic impedance of symmetrical T – network. Also derive the equation of Z_{OT} in terms of Z_{OC} and Z_{SC} .	07
	(c)	symmetrical T – network માટે કેરેક્ટરાસ્ટીક ઇમ્પીડન્સ સમજાવો. Z_{OT} નું સૂત્ર Z_{OC} and Z_{SC} ના રૂપમાં તારવો.	07
Q.3	(a)	Explain Kirchhoff's law.	03
2.3	(a) (a)	Explain Kilchioff's law. Kirchhoff's law 신부에다.	03
	(b)	Explain Mesh analysis.	04
	(b)	Mesh analysis 원મ%다.	04
	(c)	Use Thevenin's theorem to find current through the 5 Ω resistor for given	07
	(C)	circuit.	07
		100 44 24150	
		5Ω 8	
		100V + 44	
		60 7 1180	
	(c)	Thevenin's theorem નો ઉપયોગ કરીને ઉપર દર્શાવેલ સર્કિટ માટે 5 Ω રેઝીસ્ટર	07
	(0)	માંથી પસાર થતો કરંટ શોધો.	07
		OR	
Q.3	(a)	State and explain Superposition Theorem.	03
	(a)	Superposition Theorem જણાવો અને સમજાવો.	03
	(b)	Explain method of drawing dual network using any circuit.	04
	(b)	કોઈપણ સર્કિટનો ઉપયોગ કરીને ડ્યુઅલ નેટવર્ક દોરવાની પધ્દ્રતિ સમજાવો.	04
	(c)	Find out Norton's equivalent circuit for the given network. Find out load	07
	. ,	current if (i) $R_L = 3 \text{ K}\Omega$ (ii) $R_L = 1.5 \Omega$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		±±± ≥2kΩ ≥2kΩ ≥RL	
		$\frac{10V}{T} = \begin{cases} 2k\Omega & \begin{cases} 2k\Omega & \begin{cases} RL \\ 1 \end{cases} \end{cases}$	
	(c)	ઉપર આપેલ નેટવર્ક માટે નોર્ટનની ઇક્વીવેલન્ટ સર્કિટ શોધો. લોડ કરંટ શોધો જો	07
	(C)	(i) RL=3 K Ω (ii) RL=1.5 Ω	07
Q.4	(a)	Derive the equation of Quality factor Q for a coil.	03
	(a)	કોઇલ માટે ક્વોલિટી ફેક્ટર 🔉 નું સમીકરણ મેળવો.	03
	(b)	A series RLC circuit has $R = 30 \Omega$, $L = 0.5 H$ and $C = 5 \mu F$. Calculate (i) Q	04
	(b)	factor, (ii) BW, (iii) Upper cut off and lower cut off frequencies. શ્રેણી RLC સર્કિટમાં R=30 Ω, L=0.5 મ અને C=5 μF છે. (i) Q પરિબળ,	04
	(0)	ત્રલા RLC સાંકટના R=30 Ω, L=0.5 H અને C=5 μF છે. (1) ૄ વારબળ, (ii) BW, (iii) અપર કટ ઓફ અને લોઅર કટ ઓફ ફ્રીક્વન્સીઝની	VŦ
	(.)	ગણતરી કરો.	07
	(c)	Explain Mutual Inductance along with Co-efficient of mutual inductance.	07
	(c)	Also derive the equation of K. મ્યુય્યુઅલ ઇન્ડકટન્સના કો-એફીસીએન્ટ સાથે મ્યુય્યુઅલ ઇન્ડકટન્સ સમજાવો. K	07
	(C)	ન્યુવ્યુઅલ ૪°૩૩૮°ત્તના કા-અફાતાઅલ્ટ તાથ ન્યુવ્યુઅલ ૪°૩૩૮°ત તન નવા. K નું સમીકરણ પણ મેળવો.	U7
		ગુ ત્તમાર્ગ્યલ વેલા મળવા. OR	
).4	(a)	Explain the types of coupling for coupled circuit.	03
	(a)	કપલ સર્કિટ માટે કર્પ્લીંગના પ્રકારો સમજાવો.	03
	(b)	A parallel resonant circuit having inductance of 1 mH with quality factor Q	04
	` /	= 100, resonant frequency Fr = 100 KHz. Find out (i) Required capacitance	
		C, (ii) Resistance R of the coil, (iii) BW.	

	(b)	3	04
		ઇન્ડક્ટન્સ ધરાવતું સમાંતર રેઝોનન્ટ સર્કિટ. શોધો (i) જરૂરી કેપેસીટન્સ C, (ii)	
		કોઇલનો પ્રતિકાર R, (iii) BW.	
	(c)	Explain Band width and Selectivity of a series RLC circuit. Also establish the	07
		relation between Q factor and BW for series resonance circuit.	
	(c)	series RLC સર્કિટની Band width અને Selectivity સમજાવો. શ્રેણી રેઝોનન્સ	07
		સર્કિટ માટે Q પરિબળ અને BW વચ્ચેનો સંબંધ પણ સ્થાપિત કરો.	
Q.5	(a)	Design a symmetrical T type attenuator to give attenuation of 40 dB and work	03
		in to the load of 300 Ω resistance.	
		40 ડીબીનું એટેન્યુએશન આપવા અને 300 Ω પ્રતિકારના લોડમાં કામ કરવા માટે	03
		સપ્રમાણ T પ્રકારના એટેન્યુએટરને ડિઝાઇન કરો.	
	(b)	Give classification of filters.	04
		ફિલ્ટર્સનું વર્ગીકરણ આપો.	04
	(c)	Explain constant K Low Pass Filter.	07
		constant K લો પાસ ફિલ્ટર સમજાવો.	07
		OR	
Q.5	(a)	Design a high pass filter with T section having a cut-off frequency of 1.5 KHz with a load resistance of 400 Ω .	03
		400 Ω ના લોડ પ્રતિકાર સાથે 1.5 KHz ની કટ-ઓફ આવર્તન ધરાવતા T વિભાગ	03
		સાથે ઉચ્ચ પાસ ફિલ્ટર ડિઝાઇન કરો.	
	(b)	Give classification of attenuators.	04
		એટેન્યુએટરનું વર્ગીકરણ આપો.	04
	(c)	Explain constant K High Pass Filter.	07
		constant K હાઇ પાસ ફિલ્ટર સમજાવો.	07