Question 1(a) [3 marks]

Write short note: Ecological pyramid.

Answer:

Table: Types of Ecological Pyramids

Туре	Description	Example
Pyramid of Numbers	Shows number of organisms at each level	Trees → Insects → Birds
Pyramid of Biomass	Shows total mass of organisms	Large at producer level
Pyramid of Energy	Shows energy flow through levels	Always upright

• Energy Transfer: Only 10% energy transfers to next level

• Trophic Levels: Producers, primary consumers, secondary consumers

• Always Upright: Energy pyramid never inverts

Mnemonic: "Number-Biomass-Energy flows UP"

Question 1(b) [4 marks]

Describe global ecological overshoot.

Answer:

Global ecological overshoot occurs when humanity's demand exceeds Earth's regenerative capacity.

Key Components:

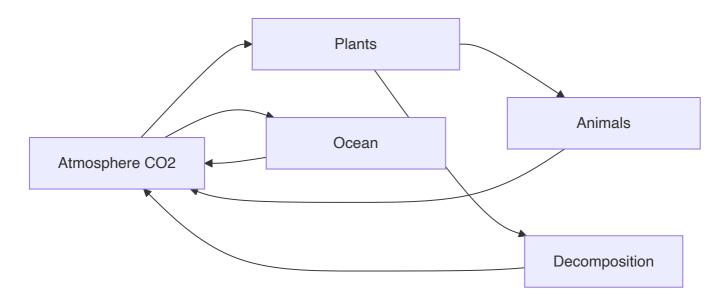
Factor	Description
Earth Overshoot Day	Date when annual resource consumption exceeds regeneration
Ecological Footprint	Human demand on natural resources
Biocapacity	Earth's ability to regenerate resources

• Current Status: Using 1.7 Earth's worth of resources annually

• Consequences: Climate change, biodiversity loss, resource depletion

• **Solutions**: Sustainable consumption, renewable energy adoption

Mnemonic: "Demand Exceeds Supply = Overshoot"


Question 1(c) [7 marks]

What are the Bio-geochemical cycle? Describe any two cycle of them.

Answer:

Bio-geochemical cycles are natural processes that recycle essential elements through biotic and abiotic components.

Carbon Cycle:

Nitrogen Cycle:

Stage	Process	Organisms
Nitrogen Fixation	N2 → NH3	Rhizobium bacteria
Nitrification	NH3 → NO3	Nitrosomonas, Nitrobacter
Denitrification	NO3 → N2	Denitrifying bacteria

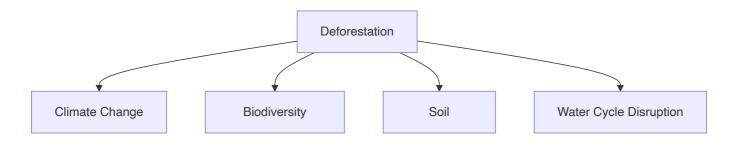
• Importance: Essential for protein synthesis and DNA formation

• Human Impact: Fertilizers disrupt natural balance

• Conservation: Reduce chemical fertilizer use

Mnemonic: "Bacteria Fix Nitrogen, Plants Use It"

Question 1(c) OR [7 marks]


Describe the forest ecosystem state and explain the effects of deforestation and suggest the methods to conserve forest ecosystem.

Answer:

Forest Ecosystem Components:

Component	Examples
Producers	Trees, shrubs, herbs
Primary Consumers	Deer, rabbits, insects
Secondary Consumers	Carnivores, birds
Decomposers	Bacteria, fungi

Effects of Deforestation:

Conservation Methods:

- Afforestation: Planting trees in new areas
- Reforestation: Replanting in deforested areas
- Protected Areas: National parks and sanctuaries
- Sustainable Harvesting: Controlled logging practices

Mnemonic: "Plant, Protect, Practice Sustainability"

Question 2(a) [3 marks]

Write definition on pollution and pollutant.

Answer:

Definitions:

Term	Definition
Pollution	Addition of harmful substances to environment
Pollutant	Substance causing environmental contamination

- Sources: Industrial, domestic, agricultural activities
- **Types**: Air, water, soil, noise pollution
- Effects: Health problems, ecosystem damage

Mnemonic: "Pollutants cause Pollution"

Question 2(b) [4 marks]

Explain short note on gravity settling chamber equipment to control air pollution.

Answer:

Gravity Settling Chamber:

Working Principle:

Parameter	Description
Mechanism	Gravitational settling of particles
Efficiency	50-70% for particles >50 μm
Velocity	Low gas velocity allows settling

- Applications: Cement, mining, metallurgy industries
- Advantages: Simple design, low maintenance cost
- **Limitations**: Ineffective for fine particles

Mnemonic: "Gravity Settles Heavy Particles"

Question 2(c) [7 marks]

Describe solid waste management.

Answer:

Solid Waste Management Hierarchy:

Management Methods:

Method	Description	Advantages
Landfill	Controlled burial	Simple, cost-effective
Incineration	High-temperature burning	Volume reduction
Composting	Biological decomposition	Nutrient-rich fertilizer
Recycling	Material recovery	Resource conservation

Components:

• Collection: Door-to-door pickup systems

• Transportation: Efficient vehicle routing

• Treatment: Sorting, processing, disposal

• Monitoring: Regular quality checks

Mnemonic: "Collect, Transport, Treat, Monitor"

Question 2(a) OR [3 marks]

Write effect on noise pollution.

Answer:

Effects of Noise Pollution:

Туре	Effects
Health Effects	Hearing loss, stress, hypertension
Psychological	Irritation, sleep disorders, anxiety
Environmental	Wildlife disruption, ecosystem damage

• Sources: Traffic, industries, construction, aircraft

• Measurement: Decibel (dB) scale

• Control: Sound barriers, noise regulations

Mnemonic: "Noise Harms Health and Habitat"

Question 2(b) OR [4 marks]

What is water pollution? Write list of main water pollutant?

Answer:

Water Pollution Definition:

Contamination of water bodies by harmful substances making it unsuitable for use.

Major Water Pollutants:

Category	Examples
Chemical	Heavy metals, pesticides, fertilizers
Biological	Bacteria, viruses, parasites
Physical	Suspended solids, thermal pollution
Radioactive	Nuclear waste materials

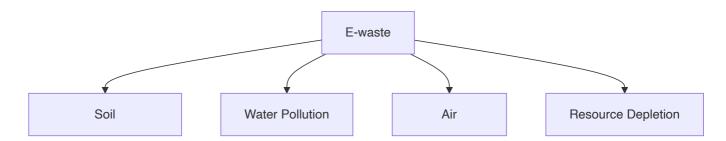
• Sources: Industrial discharge, domestic sewage, agricultural runoff

• **Effects**: Disease transmission, ecosystem disruption

• **Control**: Treatment plants, pollution prevention

Mnemonic: "Chemical, Biological, Physical, Radioactive"

Question 2(c) OR [7 marks]


What is E-waste? Write impact of E-waste on environment and human health. How to recycle E-waste?

Answer:

E-waste Definition:

Electronic waste includes discarded electrical and electronic devices.

Environmental Impact:

Health Impact:

Toxic Material	Health Effects
Lead	Nervous system damage
Mercury	Brain and kidney damage
Cadmium	Cancer, lung damage

E-waste Recycling Process:

- Collection: Designated collection centers
- **Dismantling**: Manual separation of components

• **Recovery**: Extraction of valuable materials

• **Disposal**: Safe handling of toxic substances

Mnemonic: "Collect, Dismantle, Recover, Dispose Safely"

Question 3(a) [3 marks]

What is BOD? Give a importance of BOD.

Answer:

BOD (Biochemical Oxygen Demand):

Parameter	Description
Definition	Oxygen required by microorganisms to decompose organic matter
Unit	mg/L or ppm
Test Period	5 days at 20°C

Importance:

• Water Quality: Indicates organic pollution level

• Treatment Efficiency: Monitors treatment plant performance

• Environmental Health: Assesses aquatic ecosystem condition

Mnemonic: "Bacteria Oxygen Demand measures pollution"

Question 3(b) [4 marks]

Give a comparison of conventional and Non conventional energy sources.

Answer:

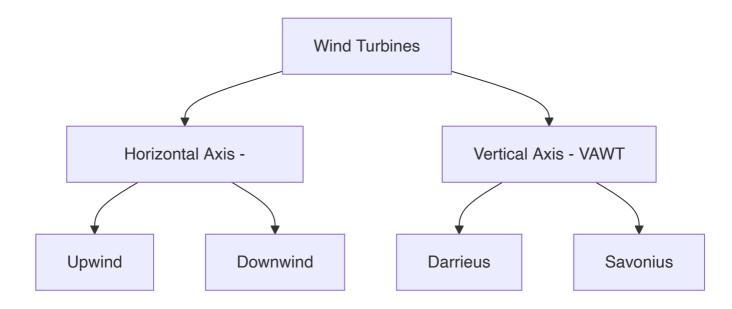
Energy Sources Comparison:

Parameter	Conventional	Non-Conventional
Examples	Coal, oil, natural gas	Solar, wind, biomass
Availability	Limited reserves	Unlimited/renewable
Environment	High pollution	Environment friendly
Cost	Initially cheap	High initial cost
Sustainability	Non-sustainable	Sustainable

• Conventional: Depleting rapidly, cause greenhouse gases

• Non-conventional: Clean, abundant, future energy solution

• Transition: Global shift towards renewable energy


Mnemonic: "Conventional Pollutes, Renewable Sustains"

Question 3(c) [7 marks]

Give classification of wind turbines and explain horizontal axis wind turbine.

Answer:

Wind Turbine Classification:

Horizontal Axis Wind Turbine (HAWT):

Components:

Component	Function
Rotor Blades	Convert wind energy to rotational motion
Nacelle	Houses generator and gearbox
Tower	Supports turbine at optimal height
Foundation	Provides structural stability

Working Principle:

• Wind Direction: Parallel to rotor axis

• Blade Design: Aerodynamic lift principle

• Power Generation: Variable speed operation

• Efficiency: 35-45% energy conversion

Advantages:

• **High Efficiency**: Better power coefficient

• Mature Technology: Well-established design

• Cost Effective: Lower maintenance costs

Mnemonic: "Horizontal High Efficiency"

Question 3(a) OR [3 marks]

Explain need for renewable energy.

Answer:

Need for Renewable Energy:

Reason	Description
Energy Security	Reduce import dependence
Environmental Protection	Zero carbon emissions
Economic Benefits	Job creation, cost reduction

• Fossil Fuel Depletion: Limited reserves, increasing prices

• Climate Change: Urgent need to reduce greenhouse gases

• Sustainable Development: Meet present needs without compromising future

Mnemonic: "Security, Environment, Economy need Renewables"

Question 3(b) OR [4 marks]

Write a short note on Geo thermal energy.

Answer:

Geothermal Energy:

Heat energy stored beneath Earth's surface used for power generation.

Types:

Туре	Temperature	Application
High Temperature	>150°C	Power generation
Medium Temperature	90-150°C	Direct heating
Low Temperature	<90°C	Heat pumps

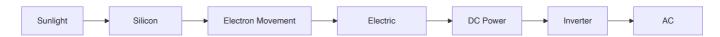
• Sources: Hot springs, geysers, underground reservoirs

• Advantages: Continuous availability, low emissions

• Applications: Electricity generation, space heating, industrial processes

Mnemonic: "Earth's Heat Powers Homes"

Question 3(c) OR [7 marks]


Explain the principal and working of solar photovoltaic cell. Give its uses.

Answer:

Solar Photovoltaic Cell Principle:

Converts sunlight directly into electricity using photovoltaic effect.

Working Process:

Cell Structure:

Layer	Material	Function
Top Layer	N-type silicon	Excess electrons
Bottom Layer	P-type silicon	Electron holes
Junction	P-N junction	Electric field creation

Working Steps:

• **Photon Absorption**: Light energy absorbed by silicon

• Electron Excitation: Electrons gain energy and move

• Current Generation: Electron flow creates electricity

• External Circuit: Current flows through load

Applications:

• Residential: Rooftop solar systems

• Commercial: Solar farms, street lighting

• Industrial: Remote power supply, satellites

• Transportation: Solar vehicles, charging stations

Advantages:

• Clean Energy: No emissions during operation

• Low Maintenance: Minimal moving parts

• Modular: Scalable installation

Mnemonic: "Sun Strikes Silicon, Sparks Current"

Question 4(a) [3 marks]

Explain Green house effect.

Answer:

Greenhouse Effect:

Natural process where certain gases trap heat in Earth's atmosphere.

Mechanism:

Step	Process
Solar Radiation	Sun's energy reaches Earth
Surface Absorption	Earth absorbs and heats up
Re-radiation	Earth emits infrared radiation
Gas Trapping	Greenhouse gases trap heat

• Natural Effect: Maintains Earth's temperature for life

• Enhanced Effect: Human activities increase greenhouse gases

• Result: Global warming and climate change

Mnemonic: "Gases Trap Heat, Earth Heats"

Question 4(b) [4 marks]

Write international protocol to prevent climate change management.

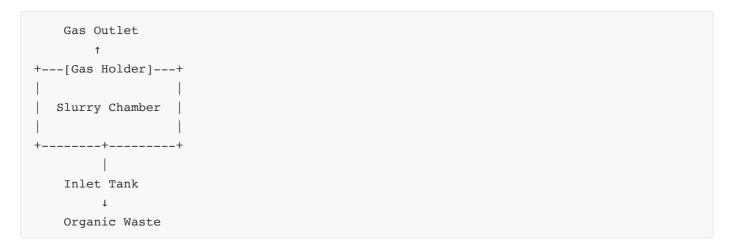
Answer:

International Climate Protocols:

Protocol	Year	Objective
Kyoto Protocol	1997	Reduce greenhouse gas emissions
Paris Agreement	2015	Limit global warming to 1.5°C
Montreal Protocol	1987	Protect ozone layer

Key Features:

- Emission Targets: Binding commitments for developed countries
- Clean Development: Technology transfer to developing nations
- Carbon Trading: Market-based emission reduction mechanisms
- Monitoring: Regular reporting and verification systems


Mnemonic: "Kyoto, Paris, Montreal Protect Climate"

Question 4(c) [7 marks]

Explain biogas plant with neat sketch.

Answer:

Biogas Plant:

Components:

Component	Function
Inlet Tank	Receives organic waste
Digester	Anaerobic decomposition occurs
Gas Holder	Stores produced biogas
Outlet	Removes spent slurry

Working Process:

• Loading: Organic waste mixed with water

• Digestion: Bacteria decompose waste anaerobically

• Gas Production: Methane and CO2 generated

• Collection: Gas stored in holder for use

Raw Materials:

• Animal Waste: Cow dung, poultry droppings

• Plant Waste: Agricultural residues, kitchen waste

• Water: Maintains proper consistency

Products:

• Biogas: 50-70% methane for cooking/heating

• Slurry: Excellent organic fertilizer

Advantages:

• Renewable: Continuous gas production

• Waste Management: Converts waste to energy

• Rural Development: Suitable for villages

Mnemonic: "Waste In, Gas Out, Fertilizer Bonus"

Question 4(a) OR [3 marks]

Write short note on green house gases.

Answer:

Greenhouse Gases:

Gas	Source	Contribution
Carbon Dioxide	Fossil fuels, deforestation	76%
Methane	Agriculture, landfills	16%
Nitrous Oxide	Fertilizers, combustion	6%
Fluorinated Gases	Industrial processes	2%

• Properties: Absorb and emit infrared radiation

• Impact: Trap heat causing global warming

• Control: Reduce emissions, use alternatives

Mnemonic: "CO2, CH4, N2O, F-gases Heat Earth"

Question 4(b) OR [4 marks]

Explain ozone layer depletion.

Answer:

Ozone Layer Depletion:

Reduction of ozone concentration in stratosphere due to human activities.

Causes:

Substance	Source	Effect
CFCs	Refrigerants, aerosols	Break down ozone molecules
Halons	Fire extinguishers	Catalytic ozone destruction
Methyl Bromide	Pesticides	Ozone layer thinning

Process:

• UV Breakdown: UV radiation breaks CFC molecules

• Chlorine Release: Free chlorine atoms released

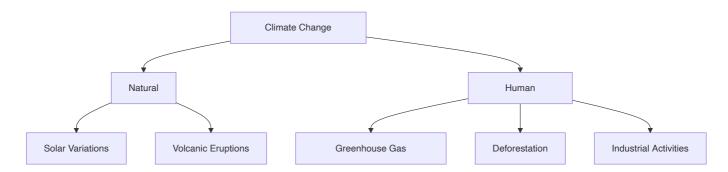
• Ozone Destruction: Chlorine destroys ozone molecules

• Chain Reaction: One CFC molecule destroys many ozone molecules

Effects: Increased UV radiation, skin cancer, crop damage

Mnemonic: "CFCs Climb, Chlorine Chops Ozone"

Question 4(c) OR [7 marks]


Explain the term "climate changes and state its causes and effects"

Answer:

Climate Change Definition:

Long-term shifts in global weather patterns and temperatures.

Causes:

Human Causes:

Activity	Contribution
Fossil Fuel Burning	65% of CO2 emissions
Deforestation	15% of emissions
Industrial Processes	20% of emissions

Effects:

Environmental Effects:

• Temperature Rise: Global average temperature increase

• Sea Level Rise: Thermal expansion and ice melting

• Weather Extremes: More frequent droughts, floods

Biological Effects:

- Species Migration: Animals moving to cooler regions
- **Ecosystem Disruption**: Food chain alterations
- Biodiversity Loss: Species extinction rates increase

Human Effects:

- Agriculture: Crop yield changes, food security issues
- Health: Heat stress, disease vector changes
- **Economy**: Infrastructure damage, adaptation costs

Mitigation Strategies:

- Renewable Energy: Transition from fossil fuels
- Energy Efficiency: Reduce consumption
- Carbon Sequestration: Forest conservation, tree planting
- International Cooperation: Global agreements and policies

Mnemonic: "Human Actions Heat Earth, Everyone Affected"

Question 5(a) [3 marks]

Explain "Khet Talavadi".

Answer:

Khet Talavadi (Farm Pond):

Small water harvesting structure in agricultural fields for irrigation.

Features:

Parameter	Description
Size	20m x 20m x 3m depth
Capacity	1200 cubic meters
Cost	Subsidized by government

- **Purpose**: Rainwater collection, irrigation during dry periods
- Benefits: Increased crop yield, groundwater recharge
- Construction: Lined with plastic sheets or cement

Mnemonic: "Farm Pond Stores Rain for Crops"

Question 5(b) [4 marks]

Give goal and advantage of green building.

Answer:

Green Building Goals:

Goal	Description
Energy Efficiency	Reduce energy consumption
Water Conservation	Minimize water usage
Material Efficiency	Use sustainable materials
Indoor Environment	Improve air quality

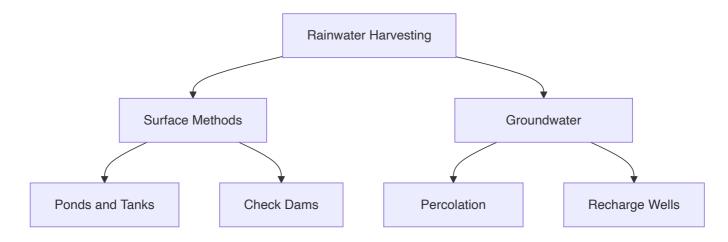
Advantages:

- Environmental: Reduced carbon footprint, waste minimization
- **Economic**: Lower operating costs, increased property value
- Health: Better indoor air quality, natural lighting
- Social: Enhanced occupant comfort, productivity

Green Building Features:

- Solar Panels: Renewable energy generation
- Rainwater Harvesting: Water conservation
- Green Roofs: Insulation and air purification

Mnemonic: "Green Goals: Energy, Water, Materials, Environment"


Question 5(c) [7 marks]

Explain various methods of rain water harvesting.

Answer:

Rainwater Harvesting Methods:

Surface Methods:

Detailed Methods:

Method	Description	Application
Rooftop Harvesting	Collect water from building roofs	Urban areas
Surface Runoff	Capture water from ground surface	Rural areas
Check Dams	Small barriers across streams	Hilly regions
Percolation Tanks	Allow water to seep underground	Groundwater recharge

System Components:

• Catchment Area: Surface collecting rainwater

• Conveyance System: Gutters, pipes for transport

• Storage System: Tanks, ponds for holding water

• Filter System: Remove debris and contaminants

Rooftop Harvesting Process:

• Collection: Rain falls on roof surface

• Conveyance: Water flows through gutters and downspouts

• First Flush: Initial dirty water diverted

• **Storage**: Clean water stored in tanks

• Distribution: Water used for various purposes

Benefits:

• Water Security: Reduce dependence on external supply

• Flood Control: Reduce surface runoff and flooding

• Groundwater Recharge: Replenish underground aquifers

• Cost Savings: Reduce water bills

Design Considerations:

• Rainfall Data: Annual precipitation patterns

• Catchment Area: Available roof/ground area

• Storage Capacity: Based on demand and supply

• Water Quality: Treatment requirements

Mnemonic: "Catch, Convey, Store, Filter, Use"

Question 5(a) OR [3 marks]

What is Life cycle analysis (LCA)?

Answer:

Life Cycle Analysis (LCA):

Systematic evaluation of environmental impacts of a product throughout its entire life cycle.

LCA Stages:

Stage	Description
Raw Material	Resource extraction
Manufacturing	Production processes
Use Phase	Product utilization
End of Life	Disposal or recycling

• Purpose: Identify environmental hotspots, compare alternatives

• Applications: Product design, policy decisions, consumer choices

Mnemonic: "Life Cycle: Raw, Make, Use, Dispose"

Question 5(b) OR [4 marks]

Give main features of the biological diversity Act, 2002

Answer:

Biological Diversity Act, 2002:

Main Features:

Feature	Description
Three-tier Structure	National, State, Local Biodiversity Boards
Prior Approval	Required for bio-resource access
Benefit Sharing	Equitable sharing with local communities
Bio-piracy Prevention	Protect traditional knowledge

Key Provisions:

• Access Regulation: Control over biological resources

• Sustainable Use: Conservation through utilization

• **Community Rights**: Recognize local community contributions

• Penalties: Strict punishment for violations

Objectives: Conservation, sustainable use, equitable benefit sharing

Mnemonic: "Biodiversity Act: Access, Benefit, Conserve, Protect"

Question 5(c) OR [7 marks]

Explain 5R.

Answer:

5R Concept:

Waste management hierarchy for environmental sustainability.

The 5Rs:

Detailed Explanation:

R	Definition	Examples	Benefits
Refuse	Avoid unnecessary items	Plastic bags, disposables	Prevent waste generation
Reduce	Minimize consumption	Energy, water, materials	Lower resource demand
Reuse	Use items multiple times	Containers, clothing	Extend product life
Repurpose	Find new uses for items	Tire planters, bottle crafts	Creative waste diversion
Recycle	Process into new products	Paper, plastic, metals	Material recovery

Implementation Strategies:

Personal Level:

• **Refuse**: Say no to single-use plastics

• **Reduce**: Buy only necessary items

• Reuse: Repurpose containers and materials

• Repurpose: Creative DIY projects

• Recycle: Proper sorting and disposal

Community Level:

• Awareness Programs: Education about 5R principles

• Infrastructure: Recycling facilities and collection systems

• Policies: Regulations promoting waste reduction

• Incentives: Rewards for sustainable practices

Industrial Level:

• Design for Durability: Long-lasting products

• Material Selection: Recyclable and biodegradable materials

- Circular Economy: Closed-loop production systems
- Extended Producer Responsibility: Manufacturer accountability

Environmental Benefits:

- Resource Conservation: Reduced raw material extraction
- Energy Savings: Lower production energy requirements
- Pollution Reduction: Decreased waste generation
- Climate Protection: Reduced greenhouse gas emissions

Economic Benefits:

- Cost Savings: Lower disposal and material costs
- **Job Creation**: Green jobs in recycling and reuse sectors
- Innovation: Development of sustainable technologies
- Market Opportunities: New business models

Social Benefits:

- Community Engagement: Collective environmental action
- Health Improvement: Cleaner environment
- Education: Environmental awareness and responsibility
- Cultural Change: Sustainable lifestyle adoption

Challenges:

- **Behavior Change**: Overcoming consumption habits
- Infrastructure: Adequate recycling facilities
- Economic Barriers: Initial investment requirements
- Policy Support: Government regulations and incentives

Success Stories:

- Zero Waste Cities: San Francisco, Kamikatsu
- Corporate Initiatives: Company 5R programs
- School Programs: Student environmental education
- Community Projects: Local waste reduction efforts

Mnemonic: "Really Reduce Reuse Repurpose Recycle"