
MPMC Programs
As per Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Milav Dabgar

Contents
1 MPMC Programs 1

1.1 Assembly Language Programs . 1
1.1.1 MPMC GTU Paper Programs Solutions . 1
1.1.2 Mazidi Book Assembly Language Programs . 16

1.2 Embedded C Programs . 36
1.2.1 Mazidi Book C Programs . 36

1 MPMC Programs
1.1 Assembly Language Programs
1.1.1 MPMC GTU Paper Programs Solutions

ORG 0000H ; Set the s t a r t i n g address o f the program to 0000H

MOV A, #05H ; Load the f i r s t byte (mu l t ip l i cand) in to the accumulator
MOV B, #03H ; Load the second byte (mu l t i p l i e r) i n to r e g i s t e r B

MUL AB ; Mult ip ly the contents o f A and B (r e s u l t s to r ed in A and B)

; At t h i s point , the lower byte o f the r e s u l t i s in the accumulator (A)
; and the h igher byte o f the r e s u l t i s in r e g i s t e r B.

; Example : To s t o r e the r e s u l t in memory
MOV 40H, A ; Store the lower byte in memory l o c a t i o n 40H
MOV 41H, B ; Store the h igher byte in memory l o c a t i o n 41H

END ; End o f program

Explanation:

1. ORG 0000H: This directive tells the assembler that the code should be placed starting from
memory address 0000H.

2. MOV A, #05H: This instruction loads the immediate value 05H (the first number) into the
accumulator register (A).

3. MOV B, #03H: This instruction loads the immediate value 03H (the second number) into register
B.

4. MUL AB: This is the core multiplication instruction. It multiplies the contents of the accumulator
(A) with the contents of register B. The 16-bit result is stored across the accumulator (lower byte)
and register B (higher byte).

5. MOV 40H, A / MOV 41H, B: These instructions are an example of how you would store the
result in memory. Here, the lower byte of the result is stored at address 40H and the higher byte at
41H.

Important Notes:

1

MPMC Programs 2

• The 8051 can only multiply 8-bit numbers. The result of 05H * 03H = 0FH (15), fits within a single
byte so there’s no overflow in this case.

• If the result was larger than 255 (FFh), the overflow flag (OV) in the program status word (PSW)
would be set.

ORG 0000H ; Star t the program at memory address 0000H

MOV A, 30H ; Load the f i r s t number from RAM lo c a t i o n 30H in to A
MOV B, @A ; Move the value pointed to by A (the f i r s t number) in to B

INC A ; Increment A to po int to the second number (31H)
MOV A, @A ; Move the value pointed to by A (the second number) in to A

MUL AB ; Mult ip ly the two numbers

MOV 52H, A ; Store the LSB o f the r e s u l t at memory l o c a t i o n 52H
MOV 51H, B ; Store the MSB of the r e s u l t at memory l o c a t i o n 51H

END ; End o f program

Explanation:

1. ORG 0000H: Indicates the starting memory address for the program.
2. MOV A, 30H: Loads the memory address 30H into the accumulator (A).
3. MOV B, @A: Indirect addressing. Moves the contents of the memory location pointed to by A

(which contains the first number) into register B.
4. INC A: Increments A to point to location 31H, where the second number is stored.
5. MOV A, @A: Loads the second number (from location 31H) into the accumulator.
6. MUL AB: Multiplies the number in the accumulator (A) with the number in register B.
7. MOV 52H, A: Stores the lower byte (LSB) of the result in memory location 52H.
8. MOV 51H, B: Stores the higher byte (MSB) of the result in memory location 51H.

ORG 0000H ; Star t the program at memory address 0000H

MOV A, #09H ; Load the div idend (09h) in to the accumulator
MOV B, #02H ; Load the d i v i s o r (02h) in to r e g i s t e r B

DIV AB ; Divide the accumulator (A) by r e g i s t e r B
; Quotient w i l l be in A, remainder in B

; Example : To s t o r e the r e s u l t s in memory
MOV 60H, A ; Store the quot i ent in memory l o c a t i o n 60H
MOV 61H, B ; Store the remainder in memory l o c a t i o n 61H

END ; End o f program

Explanation:

1. ORG 0000H: Sets the starting address of the program.
2. MOV A, #09H: Loads the dividend (the number to be divided) into the accumulator.
3. MOV B, #02H: Loads the divisor into register B.
4. DIV AB: Performs the division. The result (quotient) is stored in the accumulator (A), and the

remainder is stored in register B.
5. MOV 60H, A / MOV 61H, B: These are example instructions to store the quotient and remainder

in memory locations 60H and 61H, respectively.

MPMC Programs Milav Dabgar

MPMC Programs 3

Important Notes:

• Integer Division: The 8051 DIV instruction performs integer division, meaning any fractional
part of the result will be discarded.

• Overflow: If the result of the division is too large to fit in the accumulator, the overflow flag (OV)
will be set in the program status word (PSW). You’ll need to add code to handle this potential
overflow situation if it’s relevant to your application.

Result:

In this case, 09h / 02h = 4 (quotient) with a remainder of 1.

ORG 0000H ; Set the program ' s s t a r t i n g address

MOV A, 20H ; Load the address o f the div idend in to A
MOV B, @A ; Move the div idend from RAM to r e g i s t e r B
INC A ; Increment A to po int to the d i v i s o r
MOV A, @A ; Move the d i v i s o r from RAM to the accumulator (A)

DIV AB ; Divide the accumulator (A) by r e g i s t e r B
; Quotient in A, remainder in B

MOV 40H, A ; Store the quot i ent at memory l o c a t i o n 40H
MOV 41H, B ; Store the remainder at memory l o c a t i o n 41H

END ; End o f program

Explanation:

1. ORG 0000H: Indicates the program starts at memory address 0000H.
2. MOV A, 20H: Loads the memory address 20H (where the dividend is stored) into the accumulator.
3. MOV B, @A: Indirect addressing. Loads the value at the memory location pointed to by A (the

dividend) into register B.
4. INC A: Increments the accumulator to point to address 21H, where the divisor is stored.
5. MOV A, @A: Loads the value at the memory location pointed to by A (the divisor) into the

accumulator.
6. DIV AB: Performs the division. The quotient is left in the accumulator (A) and the remainder in

register B.
7. MOV 40H, A: Stores the quotient (from A) into memory location 40H.
8. MOV 41H, B: Stores the remainder (from B) into memory location 41H.

1.1.1.5 Write a program to create square wave of 50 % duty cycle on P1.3 pin using timer.
(4) Code (Assuming Timer 0, Mode 1):

ORG 0000H

MOV TMOD, #01H ; Set Timer 0 in Mode 1 (16− b i t t imer)

; Ca l cu la t e Timer Reload Value (ad jus t f o r your c r y s t a l f requency)
; Example : Assuming 12 MHz c r y s t a l f requency
; Des i red per iod = Time f o r HIGH + Time f o r LOW = 2 ∗ Time f o r HIGH
; Let ' s make Time f o r HIGH = 1 ms (ad jus t as needed)
; Timer count = (Crysta l Frequency / 12) ∗ Time
; = (12000000 /12) ∗ 0 .001 = 1000
; Reload Value = 65536 − Timer Count = 65536 − 1000 = 64536
; S p l i t i n to h igher and lower bytes :
MOV TH0, #0xFC ; Higher byte o f r e l oad value

MPMC Programs Milav Dabgar

MPMC Programs 4

MOV TL0 , #0x18 ; Lower byte o f r e l oad value

SETB P1 . 3 ; I n i t i a l l y s e t the pin HIGH
SETB TR0 ; Star t Timer 0

HERE:
JNB TF0 , HERE ; Wait f o r Timer 0 over f l ow
CLR TF0 ; Clear the over f l ow f l a g
CPL P1 . 3 ; Toggle the pin
SJMP HERE ; Repeat i n d e f i n i t e l y

Explanation:

1. ORG 0000H: Sets the program starting address.

2. MOV TMOD, #01H: Configures Timer 0 to operate in Mode 1 (16-bit mode).

3. Timer Reload Value Calculation:

• You’ll need to adjust the calculation based on your crystal frequency and desired square wave
period. The example assumes a 12 MHz crystal and aims for a 1 ms HIGH time (and 1 ms
LOW time).

4. MOV TH0, #0xFC / MOV TL0, #0x18: Load the calculated reload value into Timer 0’s
high and low registers.

5. SETB P1.3: Initially set the output pin P1.3 to HIGH.

6. SETB TR0: Start running Timer 0.

7. HERE / JNB TF0, HERE: Create a loop waiting for the Timer 0 overflow flag (TF0) to be set.

8. CLR TF0: Clear the Timer 0 overflow flag.

9. CPL P1.3: Complement (toggle) the logic level of the P1.3 pin.

10. SJMP HERE: Jump back to the beginning of the loop, creating an infinite square wave generation.

Important Considerations:

• Crystal Frequency: Make sure to adjust the reload value calculation based on your specific crystal
frequency.

• Timer Mode: Mode 1 is a common choice for square wave generation.
• Output Pin: Ensure that P1.3 is configured as an output pin.
• Desired Period/Frequency: Adjust the calculation to achieve your specific square wave timing

requirements.

ORG 0000H ; Set program o r i g i n

MOV TMOD, #01H ; Conf igure Timer 0 in Mode 1 (16− b i t mode)

; Ca l cu la t e Timer Reload Value (ad jus t f o r your de s i r ed f requency)
; Example : Assuming 11.0592 MHz c r y s t a l f requency f o r a 1 kHz square wave
; 1 kHz square wave has a per iod o f 1 ms (0 . 001 seconds)
; Time f o r HIGH = Time f o r LOW = 0.5 ms (0 .0005 seconds)
; Timer count = (Crysta l Frequency / 12) ∗ Time
; = (11059200 / 12) ∗ 0 .0005
; = 460 .8
; Reload Value = 65536 − Timer Count = 65536 − 460 = 65076
; S p l i t i n to h igher and lower bytes :
MOV TH0, #0xFC ; Higher byte o f r e l oad value (65076)
MOV TL0 , #0x18 ; Lower byte o f r e l oad value (65076)

SETB P1 . 1 ; I n i t i a l l y s e t P1 . 1 HIGH
SETB TR0 ; Star t Timer 0

HERE:

MPMC Programs Milav Dabgar

MPMC Programs 5

JNB TF0 , HERE ; Wait f o r Timer 0 to over f l ow
CLR TF0 ; Clear the over f l ow f l a g
CPL P1 . 1 ; Toggle the P1 . 1 pin
SJMP HERE ; Loop back to c r e a t e the square wave

Explanation:

1. ORG 0000H: Sets the starting address of your program.
2. MOV TMOD, #01H: Configures Timer 0 to operate in Mode 1, which is a 16-bit timer mode.
3. Timer Reload Calculation:

• You need to adjust this calculation based on your crystal frequency and the desired
frequency of the square wave.

• The example aims for a 1 kHz square wave with a 11.0592 MHz crystal.
4. MOV TH0, #0xFC / MOV TL0, #0x18: Loads the calculated reload value into Timer 0’s

registers.
5. SETB P1.1: Sets the P1.1 pin HIGH initially.
6. SETB TR0: Starts Timer 0.
7. HERE / JNB TF0, HERE: Creates a loop that waits for the Timer 0 overflow flag (TF0).
8. CLR TF0: Clears the overflow flag.
9. CPL P1.1: Toggles the state of the P1.1 pin, changing it from HIGH to LOW or vice versa.
10. SJMP HERE: Jumps back to the label “HERE,” creating a continuous square wave.

Key Points:

• Crystal Frequency: Replace the crystal frequency in the calculation with the actual value for
your 8051 system.

• Desired Frequency: Modify the calculation to get the square wave frequency you need.
• Pin Configuration: Ensure that P1.1 is configured as an output pin.

ORG 0000H

DELAY:
MOV R0 , #50D ; Load a value in to r e g i s t e r R0 (ad jus t f o r de lay)
MOV R1 , #250D ; Load a value in to r e g i s t e r R1 (ad jus t f o r de lay)

DJNZ_R1: ; Decrement R1 and jump i f not zero
DJNZ R1 , DJNZ_R1

DJNZ_R0: ; Decrement R0 and jump i f not zero
DJNZ R0 , DJNZ_R0

RET ; Return from the subrout ine

Explanation:

1. DELAY: This label marks the beginning of your delay subroutine.

2. MOV R0, #50D / MOV R1, #250D: These instructions load initial values into two registers,
R0 and R1. The larger the values, the longer the delay. You’ll need to adjust these based on your
crystal frequency and the desired delay length.

3. DJNZ_R1 / DJNZ_R0: These are “Decrement and Jump if Not Zero” instructions. They form
two nested loops:

• Outer Loop (R0): The outer loop decrements R0 and repeats until R0 reaches zero.

MPMC Programs Milav Dabgar

MPMC Programs 6

• Inner Loop (R1): The inner loop decrements R1 and repeats until R1 reaches zero. Each
time the inner loop runs, it reloads R1 with its initial value.

How it Works:

The nested loops create a series of decrement operations. The combination of instructions and the initial
values in R0 and R1 determine the overall time the delay takes to execute.

Important Considerations:

• Accuracy: Software delays are not perfectly precise. Their timing depends on your crystal frequency
and the number of instructions within the loop.

• Crystal Frequency: For more accurate delays, you’ll need to calibrate the initial values (in R0
and R1) based on your crystal frequency.

• Timer Alternatives: For very precise delays, consider using the 8051’s built-in timers instead of
software delay loops.

MOV A, R2 ; Copy the contents o f R2 in to the accumulator
ANL A, #0F0H ; Perform a l o g i c a l AND with 0F0H to mask the lower 4 b i t s
MOV R2 , A ; Move the r e s u l t back in to R2

Explanation:

1. MOV A, R2: This instruction copies the current value stored in register R2 into the accumulator
(A).

2. ANL A, #0F0H: This performs a logical AND operation between the value in the accumulator
(which now contains the original value of R2) and the hexadecimal value 0F0H. The result will be
that:

• Bits 4-7 of the accumulator will remain unchanged.
• Bits 0-3 of the accumulator will become 0 (masked).

3. MOV R2, A: This instruction moves the modified contents of the accumulator (with the lower
bits masked) back into register R2.

Key Points

• Hexadecimal Mask: The value 0F0H (binary: 1111 0000) is used as a mask because it has ’1’s in
the bit positions you want to preserve and ’0’s in the bit positions you want to clear.

• Masking: Masking is a technique used to isolate or clear specific bits within a byte.

MOV R0 , #20H ; Load s t a r t i n g address i n to a r e g i s t e r (R0 in t h i s case)
MOV A, #0FFH ; Load the data to be f i l l e d in to the accumulator

FILL_LOOP:
MOV @R0, A ; Store the content o f the accumulator in to the memory

↪→ l o c a t i o n pointed to by R0
INC R0 ; Increment R0 to po int to the next memory l o c a t i o n
CJNE R0 , #30H, FILL_LOOP ; Compare R0 with the ending address + 1 (30H) ,

↪→ jump to FILL_LOOP i f not equal

Explanation:

1. MOV R0, #20H: Load the starting memory address (20H) into a register (we’re using R0).

MPMC Programs Milav Dabgar

MPMC Programs 7

2. MOV A, #0FFH: Load the value you want to fill (FFH) into the accumulator.

3. FILL_LOOP: This label marks the beginning of the loop.

4. MOV @R0, A: This instruction uses indirect addressing. It stores the contents of the accumulator
(FFH) into the memory location pointed to by the register R0.

5. INC R0: Increment the register R0 to point to the next memory location.

6. CJNE R0, #30H, FILL_LOOP: This instruction means “Compare and Jump if Not Equal.” It
compares the contents of R0 with the value 30H (which is the ending address + 1). If they are not
equal, the program jumps back to the FILL_LOOP label, continuing the filling process.

Key Points:

• Indirect Addressing: The @R0 syntax means that the contents of R0 are used as the memory
address.

• Loop Termination: The CJNE instruction ensures the loop runs until memory location 2FH is
filled.

ORG 0000H ; Set o r i g i n o f the program

; Load data from ex t e rna l memory
MOV A, #30H ; Load lower byte o f the f i r s t number ' s address i n to A
MOVC A, @A+DPTR ; Fetch the f i r s t number from ex t e rna l memory us ing DPTR
MOV B, A ; Store the f i r s t number in r e g i s t e r B

MOV A, #31H ; Load lower byte o f the second number ' s address i n to A
MOVC A, @A+DPTR ; Fetch the second number from ex t e rna l memory

ADD A, B ; Add the two numbers (r e s u l t now in A)

MOV A, #32H ; Load lower byte o f the r e s u l t address i n to A
MOVX @DPTR, A ; Store the r e s u l t in ex t e rna l memory us ing DPTR

END ; End o f program

Explanation:

1. ORG 0000H: Sets the starting memory address for the program.

2. MOV A, #30H / MOVC A, @A+DPTR:

• Loads the lower byte of the first number’s address (2030H) into the accumulator (A).
• Uses the DPTR (Data Pointer) register to access external memory. The MOVC instruction

fetches the byte at the address calculated by adding the contents of A to the value in DPTR.

3. MOV B, A: Stores the fetched first number in register B.

4. MOV A, #31H / MOVC A, @A+DPTR Repeats the process to fetch the second number
from address 2031H.

5. ADD A, B: Adds the two numbers together, storing the result in the accumulator (A).

6. MOV A, #32H / MOVX @DPTR, A:

• Loads the lower byte of the result’s address (2032H) into A.
• Uses MOVX for external memory access, storing the result from A at the address pointed to

by DPTR.

MPMC Programs Milav Dabgar

MPMC Programs 8

Important Notes:

• DPTR Setup: Ensure that your DPTR register is correctly initialized to point to the start of
external memory before executing this code.

• MOVC vs. MOVX: MOVC is used to read from code memory (usually within the 8051), while
MOVX is used for external data memory.

1.1.1.11 Draw circuit diagram for interfacing 8 LEDS on port 1. Write a program to flash
LEDS in sequence (on 1 LED at a time) with suitable time delay. (7) Circuit Diagram

1. 8051 Microcontroller: The heart of the circuit. Choose your specific 8051 microcontroller model.

2. LEDs: 8 regular LEDs (choose a suitable color).

3. Current-Limiting Resistors: One resistor for each LED. Calculate the resistor value using this
formula:

Re s i s t o r Value (Ohms) = (Supply Voltage − LED Forward Voltage) /
↪→ Desired LED Current

• Typical forward voltage for LEDs is around 1.8V - 3.3V (check your LED datasheet)
• Common LED current is around 20mA (0.02A)

4. Connections:

• Connect one leg of each LED to a separate pin on Port 1 of the 8051 (P1.0 - P1.7).
• Connect the other leg of each LED to a current-limiting resistor, and then connect those

resistors to ground.

Example Circuit (Schematic would be ideal, but I’ll provide a textual description):

• Assume 5V supply and standard red LEDs (2V forward voltage)
• P1.0 —[330 Ohm Resistor]— LED — GND
• P1.1 —[330 Ohm Resistor]— LED — GND
• . . . (Repeat connections the same way for P1.2 to P1.7)

8051 Program

ORG 0000H

START:
MOV R0 , #00H ; I n i t i a l i z e a counter
MOV A, #01H ; I n i t i a l LED pattern (0000 0001)

LOOP:
MOV P1 , A ; Output the pattern to Port 1
CALL DELAY ; Cal l a de lay subrout ine
ROR A ; Rotate the pattern one b i t to the r i g h t
INC R0 ; Increment counter
CJNE R0 , #08, LOOP ; Repeat un t i l 8 LEDs have been l i t

SJMP START ; Restart the sequence

; Simple Delay Subrout ine
DELAY:
MOV R1 , #200D ; Adjust these va lue s f o r
MOV R2 , #00D ; de s i r ed de lay time
DJNZ R2 , $
DJNZ R1 , $
RET

Explanation

• START: Sets up a counter and initial LED pattern

MPMC Programs Milav Dabgar

MPMC Programs 9

• LOOP: Outputs pattern to the LEDs, calls delay, rotates the ‘1’ bit for the next LED.
• CJNE: Checks if 8 shifts have occurred, restarts if not.
• DELAY: A basic software delay using nested loops.

Key Points

• Port Output: Ensure Port 1 is configured as output.
• Resistor Calculation: Calculate the correct resistor value for your LEDs and supply voltage.
• Delay Adjustment: Modify values in the DELAY subroutine for your desired LED flashing speed.

1.1.1.12 Write a program to separate data 71h stored in accumulator , in two registers
R3=07h and R4=01h. (4) We’ll use a combination of bit-shifting and masking operations:

MOV A, #71H ; Load 71h in to the accumulator

; Extract lower 4 b i t s (R3)
MOV R3 , A ; Store the value o f A in R3
AND A, #0FH ; Mask o f f the upper 4 b i t s (keep only the lower n ibb l e)

; Extract upper 4 b i t s (R4)
MOV R4 , A ; The accumulator now holds only the upper n ibb l e
SHR A ; Sh i f t r i g h t by 4 p o s i t i o n s (move upper n ibb l e to lower)

Explanation:

1. MOV A, #71H: Load the value 71h into the accumulator (A).

2. Extract lower 4 bits:

• MOV R3, A: Store the original value from the accumulator into R3. Now both the accumulator
and R3 have the value 71h.

• AND A, #0FH: Perform a logical AND operation with 0Fh (00001111 in binary) to mask off
the upper 4 bits in the accumulator. Now, the accumulator only holds 00000111 (which is 7).

3. Extract upper 4 bits

• MOV R4, A: Store the masked value (the upper nibble, now in the lower 4 bits) into R4.
• SHR A: Shift the accumulator right by 4 positions. This moves the upper nibble (01) into the

lower 4 bits, and the accumulator now holds 00000001 (which is 1).

At the end of this code:

• R3: Contains 00000111 (7)
• R4: Contains 00000001 (1)

ORG 0000H ; Set the program ' s s t a r t i n g address

MOV R0 , #00H ; I n i t i a l i z e a r e g i s t e r (R0) as the accumulator
MOV R1 , #09H ; I n i t i a l i z e a counter (R1) to keep track o f numbers

LOOP:
ADD A, R1 ; Add the cur rent number (from R1) to the accumulator
DJNZ R1 , LOOP ; Decrement the counter and jump to LOOP i f not zero
MOV 77H, A ; Store the r e s u l t (sum) in memory l o c a t i o n 77H

END ; End o f program

Explanation:

1. ORG 0000H: Sets the starting address of your code.
2. MOV R0, #00H: Initializes register R0 to 0. R0 will store the running sum.
3. MOV R1, #09H: Initializes register R1 to 9, which will be our counter.
4. LOOP: This label marks the beginning of the loop.
5. ADD A, R1: Adds the value in R1 to the accumulator (where the running sum is stored).

MPMC Programs Milav Dabgar

MPMC Programs 10

6. DJNZ R1, LOOP: Decrements R1 and jumps back to the LOOP label if R1 is not zero. This
loop continues for 9 iterations.

7. MOV 77H, A: After the loop, the accumulator (A) holds the sum of the first 9 numbers. This
instruction stores that sum in memory location 77H.

8. END: Indicates the end of the program.

Key Points

• Registers: We use registers for calculations and as a loop counter.
• DJNZ Instruction: The ‘Decrement and Jump if Not Zero’ instruction creates the loop.

PUSH R1 ; Push the contents o f R1 onto the s tack
PUSH R2 ; Push the contents o f R2 onto the s tack
POP R1 ; Pop the top value from the stack (o r i g i n a l l y from R2) in to R1
POP R2 ; Pop the next value from the stack (o r i g i n a l l y from R1) in to R2

Explanation:

1. PUSH R1: Pushes the contents of register R1 onto the system stack.
2. PUSH R2: Pushes the contents of register R2 onto the stack (on top of R1’s value).
3. POP R1: Pops the top value from the stack and stores it into R1. Since we pushed R2 last, this

will be R2’s original value.
4. POP R2: Pops the next value from the stack and stores it into R2. This will be R1’s original value.

Result:

After executing this code, the values in R1 and R2 will have been effectively swapped.

Important Note:

The stack in the 8051 microcontroller operates in a LIFO (Last In, First Out) manner. This means the
last value pushed onto the stack will be the first value popped off.

ORG 0000H ; Set the program ' s s t a r t i n g address

MOV R0 , #30H ; Load the s t a r t i n g memory address i n to R0
MOV R1 , #21 ; I n i t i a l i z e counter (21 l o c a t i o n s from 30H to 50H i n c l u s i v e

↪→)
MOV A, #99H ; Load the data to be copied in to the accumulator

COPY_LOOP:
MOV @R0, A ; Store the data from the accumulator in to the memory

↪→ l o c a t i o n pointed to by R0
INC R0 ; Increment R0 to po int to the next memory l o c a t i o n
DJNZ R1 , COPY_LOOP ; Decrement the counter and jump back to COPY_LOOP i f

↪→ not zero

END ; End o f program

Explanation:

1. ORG 0000H: Sets the program’s starting memory address in the code space.

2. MOV R0, #30H: Loads the starting RAM address (30H) into register R0.

3. MOV R1, #21: Loads the counter value into register R1. Since there are 21 memory locations
from 30H to 50H (inclusive), we initialize our counter with 21.

4. MOV A, #99H: Loads the data (99H) to be copied into the accumulator.

MPMC Programs Milav Dabgar

MPMC Programs 11

5. COPY_LOOP: This label marks the beginning of the loop.

6. MOV @R0, A: Uses indirect addressing to store the contents of the accumulator (99H) into the
memory location currently pointed to by R0.

7. INC R0: Increments R0 to point to the next memory location where the data will be copied.

8. DJNZ R1, COPY_LOOP: Decrements the counter in R1 and jumps back to the COPY_LOOP
label if the counter is not zero. The loop continues until the counter reaches zero.

1.1.1.16 Draw a diagram to connect 8 switches with port P1 and 8 LEDs with port P2 and
write a program to show status of switch on LED. (If switch is ON then LED is ON and if
switch is OFF, LED is OFF). (7) Circuit Diagram

Components:

• 8051 Microcontroller
• 8 Switches (simple push-button or toggle switches)
• 8 LEDs
• 8 Current-limiting resistors (calculate the value based on your specific LEDs)
• Breadboard and connecting wires

Connections:

1. Port P1 (Input):

• Connect one end of each switch to a separate pin on Port P1 (P1.0 - P1.7).
• Connect the other end of each switch to the microcontroller’s ground (GND).

2. Port P2 (Output):

• Connect the anode (longer leg) of each LED to a separate pin on Port P2 (P2.0 - P2.7).
• Connect the cathode (shorter leg) of each LED to a current-limiting resistor. Connect the

other end of each resistor to ground (GND).

Important:

• Pull-up Resistors: You’ll likely need pull-up resistors (around 10k Ohms) connected between each
input pin on Port P1 and the supply voltage (VCC). This ensures a defined logic level when the
switches are open.

8051 Program

ORG 0000H

LOOP:
MOV A, P1 ; Read the input from Port P1
MOV P2 , A ; Trans fe r the input d i r e c t l y to Port P2
SJMP LOOP ; Jump back to cont inuous ly monitor the sw i t che s

END ; End o f program

Explanation

• ORG 0000H: Sets the program’s starting address.
• LOOP: Label for the main program loop.
• MOV A, P1: Reads the entire byte from Port P1 (the status of all 8 switches) and stores it in the

accumulator (A).
• MOV P2, A: Directly transfers the value from the accumulator to Port P2, controlling the LEDs

to mirror the switch states.
• SJMP LOOP: Short jump back to the beginning of the loop for continuous monitoring.

Key Points

• Switch Logic: Make sure your switch connections result in a logic HIGH when pressed and a logic
LOW when released.

• LED Considerations: Ensure Port P2 can handle the current requirements of your LEDs.

MPMC Programs Milav Dabgar

MPMC Programs 12

ORG 0000H ; Set the program ' s s t a r t i n g address

MOV DPTR, #2000H ; I n i t i a l i z e DPTR to po int to the s t a r t o f e x t e rna l RAM
MOV R0 , #10 ; I n i t i a l i z e a counter to t rack 10 numbers
MOV A, @DPTR ; Load the f i r s t number in to the accumulator
MOV 20H, A ; I n i t i a l i z e i n t e r n a l RAM lo c a t i o n 20H with the f i r s t

↪→ number (assume i t ' s the l a r g e s t i n i t i a l l y)

LOOP:
INC DPTR ; Move to the next number in ex t e rna l RAM
MOVC A, @A+DPTR ; Fetch the cur rent number
CJNE A, 20H, NEXT ; Compare the cur rent number with the l a r g e s t so f a r
MOV 20H, A ; I f the cur rent number i s l a r g e r , update the l a r g e s t

NEXT:
DJNZ R0 , LOOP ; Decrement the counter and loop i f not zero

END ; End o f program

Explanation:

1. ORG 0000H: Sets the starting address of the program.
2. MOV DPTR, #2000H: Initializes the data pointer (DPTR) to point to the start of the numbers

in external RAM (2000h).
3. MOV R0, #10: Initializes a counter (R0) to keep track of the 10 numbers.
4. MOV A, @DPTR / MOV 20H, A: Loads the first number into the accumulator and also stores

it in internal RAM location 20H as our initial assumption for the largest number.
5. LOOP: Labels the beginning of the loop.
6. INC DPTR: Increments DPTR to point to the next number.
7. MOVC A, @A+DPTR: Fetches the current number from external RAM using DPTR.
8. CJNE A, 20H, NEXT: Compares the current number (in A) with the assumed largest number

(at memory location 20H). If they are not equal, it jumps to the NEXT label.
9. MOV 20H, A: If the current number is larger, replaces the content of memory location 20H (our

largest number) with it.
10. NEXT: Label for continuing to the next number.
11. DJNZ R0, LOOP: Decrements the counter (R0) and jumps back to LOOP if the counter is not

zero.

At the end of this program, the largest number will be stored in internal RAM location
20H.

ORG 0000H ; Set the s t a r t i n g address o f the program

; Add the numbers in R0 and R1
ADD A, R0 ; Add the contents o f R0 to the accumulator
MOV R1 , A ; Store the r e s u l t in R1 (in case o f over f l ow)

; Store the r e s u l t in ex t e rna l RAM
MOV DPTR, #1030H ; Load DPTR with the s t a r t i n g ex t e rna l RAM address
MOV A, R1 ; Move the lower byte o f the r e s u l t i n to A
MOVX @DPTR, A ; Store the lower byte at 1030h
INC DPTR ; Increment DPTR to po int to 1031h
MOV A, R2 ; Move the h igher byte o f the r e s u l t (i f any) in to A
MOVX @DPTR, A ; Store the h igher byte at 1031h

END ; End o f program

Explanation:

MPMC Programs Milav Dabgar

MPMC Programs 13

1. ORG 0000H: Sets the starting address of the program.
2. ADD A, R1: Adds the contents of registers R0 and R1, storing the result in the accumulator (A).
3. MOV R1, A: Stores the result in R1 as well. This handles the case where the addition results in a

carry (overflow), ensuring the MSB is stored correctly.
4. MOV DPTR, #1030H: Initializes the DPTR (Data Pointer) with the starting address (1030h)

in external RAM.
5. MOV A, R1 / MOVX @DPTR, A: Moves the lower byte of the result to the accumulator

and then stores it at the location pointed to by DPTR (1030h) using the MOVX instruction (for
external memory access).

6. INC DPTR / MOV A, R2 / MOVX @DPTR, A: Increments DPTR to address 1031h, moves
the higher byte (if any) of the result into the accumulator, and stores it using MOVX.

Key Points:

• DPTR Setup: Make sure your DPTR is correctly set up to point to the external memory region
you want to use.

• Overflow Handling: This code correctly handles the potential overflow when adding 8-bit numbers.

1.1.1.19 Write an ALP to exchange the content of A and B (3) Method 1: Using a
Temporary Register (e.g., R0)
MOV R0 , A ; Store the contents o f A in a temporary r e g i s t e r (R0)
MOV A, B ; Move the contents o f B in to A
MOV B, R0 ; Move the o r i g i n a l contents o f A (from R0) in to B

Method 2: Using the XCH Instruction
XCH A, B ; D i r e c t l y exchange the contents o f A and B

Method 3: Using XOR Operations
XOR A, B ; XOR the contents o f A and B, r e s u l t in A
XCH A, B ; Exchange A and B
XOR A, B ; XOR A and B again (r e s u l t in o r i g i n a l va lue o f A, now in B)

Explanation:

• Method 1: This is the most general approach, using a temporary register to hold one of the values
during the swap.

• Method 2: The XCH instruction is specifically designed for exchanging values between the
accumulator and another register. It’s the most efficient way if your 8051 microcontroller supports
it.

• Method 3: This method uses the XOR (Exclusive OR) operation, which has the interesting
property that when you XOR a value with itself, the result is zero. This allows for a clever exchange
mechanism.

ORG 0000H ; Set program o r i g i n

MUL AB ; Mult ip ly the accumulator (A) by r e g i s t e r B. Result s to r ed in A
↪→ (LSB) and B (MSB)

END ; End o f program

Explanation:

• ORG 0000H: Indicates the starting address of the program’s code.
• MUL AB: This is the core multiplication instruction. It multiplies the contents of the accumulator

and register B. The 16-bit result is stored across both the accumulator (lower 8 bits) and register B
(higher 8 bits).

MPMC Programs Milav Dabgar

MPMC Programs 14

Important Notes:

• 8-bit Limitation: The 8051 can only directly multiply 8-bit numbers. If you need to multiply
larger numbers, you’ll have to implement a multi-byte multiplication algorithm using a series of
additions and shifts.

• Result Location: Remember that the lower byte of the result will be in the accumulator (A) and
the higher byte will be in register B after the multiplication.

Example:

If A = 5 (00000101) and B = 3 (00000011), then after MUL AB:

• A (Accumulator) would contain 15 (00001111) - the lower byte
• B would contain 0 (00000000) - the higher byte (in this case, it’s zero)

ORG 0000H ; Set program o r i g i n

DIV AB ; Divide accumulator (A) by r e g i s t e r B. Quotient in A, remainder
↪→ in B

END ; End o f program

Explanation:

• ORG 0000H: Sets the program’s starting address.
• DIV AB: This is the core division instruction. It divides the contents of the accumulator (which

should contain the dividend) by the contents of register B (the divisor). After the division:

– Quotient: Stored in the accumulator (A)
– Remainder: Stored in register B

Important Notes

• Integer Division: The 8051’s DIV instruction performs integer division, meaning any fractional
part of the result will be discarded.

• Zero Division: Ensure that the value in register B is not zero before performing the division.
Dividing by zero will cause an overflow flag (OV) to be set in the program status word (PSW).

Example:

If A = 10 (00001010) and B = 3 (00000011), then after DIV AB:

• A (Accumulator) would contain 3 (00000011) – the quotient
• B would contain 1 (00000001) – the remainder

1.1.1.22 Write a program to copy block of 8 data starting from location 100h to 200h.
Here’s an assembly program for the 8051 microcontroller to copy a block of 8 bytes of data from starting
location 100H to destination location 200H:

ORG 0000H ; Program s t a r t s at memory l o c a t i o n 0000H

; I n i t i a l i z a t i o n
MOV DPTR, #100H ; Set DPTR to po int to the source block (100H)
MOV R0 , #200H ; Set R0 to po int to the d e s t i n a t i on block (200H)
MOV R1 , #08H ; Set R1 as the loop counter (8 bytes to copy)

MPMC Programs Milav Dabgar

MPMC Programs 15

COPY_LOOP:
MOVX A, @DPTR ; Read a byte from the source us ing DPTR
MOVX @R0, A ; Write the byte to the d e s t i n a t i on us ing R0
INC DPTR ; Increment DPTR to po int to the next source byte
INC R0 ; Increment R0 to po int to the next d e s t i n a t i on byte
DJNZ R1 , COPY_LOOP ; Decrement R1 and jump i f not zero

; End o f Program (You can add more code here or an i n f i n i t e loop)
END

Explanation

1. ORG 0000H: This directive tells the assembler to place the code starting from memory location
0000H.

2. Initialization:

• We load the Data Pointer (DPTR) with the starting address of the source block (100H).
• Register R0 is loaded with the starting address of the destination block (200H).
• Register R1 is initialized to 8, which is the number of bytes we want to copy.

3. COPY_LOOP:

• MOVX A, @DPTR: Reads a byte from external RAM pointed to by DPTR and stores it in
the accumulator.

• MOVX @R0, A: Writes the byte from the accumulator to external RAM pointed to by R0.
• INC DPTR, INC R0: Increment both DPTR and R0 to move to the next memory locations.
• DJNZ R1, COPY_LOOP: Decrement R1 and jump back to the ‘COPY_LOOP’ label if R1 is

not zero (meaning we haven’t copied all 8 bytes yet).

4. END: Signifies the end of the assembly program.

Key Points

• This assumes you have external RAM where you are storing the data.
• You may need to adapt the addresses (100H and 200H) if your data is stored elsewhere.

1.1.1.23 Write a program to add two bytes of data and store result in R0 register. Here’s
the 8051 assembly code to add two bytes of data and store the result in register R0:

; Data i n i t i a l i z a t i o n − you might load these from memory in a r e a l program
MOV A, #56H ; Load the f i r s t byte o f data in to the accumulator
MOV B, #23H ; Load the second byte o f data in to r e g i s t e r B

; Addit ion
ADD A, B ; Add the value in r e g i s t e r B to the accumulator
MOV R0 , A ; Store the r e s u l t (which i s now in the accumulator) i n to R0

; End o f program (you might do something with the r e s u l t or add an i n f i n i t e
↪→ loop here)

END

Explanation

1. Data Initialization:

• MOV A, #56H: Loads the immediate value 56H (hexadecimal) into the accumulator (A
register).

• MOV B, #23H: Loads the immediate value 23H into register B.

2. Addition:

• ADD A, B: Adds the value in register B to the value in the accumulator. The result remains
in the accumulator.

3. Storing the Result:

MPMC Programs Milav Dabgar

MPMC Programs 16

• MOV R0, A: Moves the value from the accumulator (which holds the sum) into register R0.

Important Points

• You can replace the MOV instructions with ways to get data from other sources (memory, user
input, etc.).

• Make sure that the sum of your two data bytes can fit into 8 bits to avoid overflow.

1.1.2 Mazidi Book Assembly Language Programs

MOV A,#0 ;A=0, c l e a r ACC
MOV R2,#10 ; load counter R2=10
AGAIN: ADD A,#03 ; add 03 to ACC
DJNZ R2 ,AGAIN ; repeat un t i l R2=0,10 t imes
MOV R5 ,A ; save A in R5

MOV A,#55H ;A=55H
MOV R3,#10 ;R3=10, outer loop count
NEXT: MOV R2,#70 ;R2=70, inner loop count
AGAIN: CPL A ; complement A r e g i s t e r
DJNZ R2 ,AGAIN ; repeat i t 70 t imes
DJNZ R3 ,NEXT

MOV A,#0 ;A=0
MOV R5 ,A ; c l e a r R5
ADD A,#79H ;A=0+79H=79H
JNC N_1 ; i f CY=0, add next number
INC R5 ; i f CY=1, increment R5
N_1: ADD A,#0F5H ;A=79+F5=6E and CY=1
JNC N_2 ; jump i f CY=0
INC R5 ; i f CY=1, increment R5 (R5=1)
N_2: ADD A,#0E2H ;A=6E+E2=50 and CY=1
JNC OVER ; jump i f CY=0
INC R5 ; i f CY=1, increment 5
OVER: MOV R0 ,A ; now R0=50H, and R5=02

ORG 0
BACK: MOV A,#55H ; load A with 55H
MOV P1 ,A ; send 55H to port 1
LCALL DELAY ; time de lay
MOV A,#0AAH ; load A with AA (in hex)
MOV P1 ,A ; send AAH to port 1
LCALL DELAY
SJMP BACK ; keep doing t h i s i n d e f i n i t e l y

;−−−−−−−−−− th i s i s de lay subrout ine −−−−−−−−−−−−
ORG 300H ; put DELAY at address 300H
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex) , counter
AGAIN: DJNZ R5 ,AGAIN ; stay here un t i l R5 become 0
RET ; re turn to c a l l e r (when R5 =0)
END

MPMC Programs Milav Dabgar

MPMC Programs 17

ORG 0
BACK: MOV A,#55H ; load A with 55H
MOV P1 ,A ; send 55H to p1
MOV R4,#99H
MOV R5,#67H
LCALL DELAY ; time de lay
MOV A,#0AAH ; load A with AA
MOV P1 ,A ; send AAH to p1
LCALL DELAY
SJMP BACK ; keeping doing t h i s

;−−−−−−−th i s i s the de lay subrout ine−−−−−−
ORG 300H
DELAY: PUSH 4 ; push R4
PUSH 5 ; push R5
MOV R4,#0FFH;R4=FFH
NEXT: MOV R5,#0FFH;R5=FFH
AGAIN: DJNZ R5 ,AGAIN
DJNZ R4 ,NEXT
POP 5 ;POP in to R5
POP 4 ;POP in to R4
RET ; re turn to c a l l e r
END

BACK: MOV A,#55H
MOV P0 ,A
ACALL DELAY
MOV A,#0AAH
MOV P0 ,A
ACALL DELAY
SJMP BACK

;−−−−−−−th i s i s the de lay subrout ine−−−−−−
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex) , counter
AGAIN: DJNZ R5 ,AGAIN ; stay here un t i l R5 become 0
RET ; re turn to c a l l e r (when R5 =0)

MOV A,#0FFH ;A=FF hex
MOV P0 ,A ;make P0 an i /p port
; by wr i t i ng i t a l l 1 s
BACK: MOV A,P0 ; get data from P0
MOV P1 ,A ; send i t to port 1
SJMP BACK ; keep doing i t

MOV A,#55H
BACK: MOV P1 ,A
ACALL DELAY
CPL A
SJMP BACK

;−−−−−−−th i s i s the de lay subrout ine−−−−−−
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex) , counter
AGAIN: DJNZ R5 ,AGAIN ; stay here un t i l R5 become 0
RET ; re turn to c a l l e r (when R5 =0)

MPMC Programs Milav Dabgar

MPMC Programs 18

MOV A,#0FFH ;A=FF hex
MOV P1 ,A ;make P1 an input port
; by wr i t i ng i t a l l 1 s
MOV A,P1 ; get data from P1
MOV R7 ,A ; save i t to in reg R7
ACALL DELAY ; wait
MOV A,P1 ; another data from P1
MOV R5 ,A ; save i t to in reg R5

;−−−−−−−th i s i s the de lay subrout ine−−−−−−
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex) , counter
AGAIN: DJNZ R5 ,AGAIN ; stay here un t i l R5 become 0
RET ; re turn to c a l l e r (when R5 =0)

HERE: SETB P1 . 0 ; s e t to high b i t 0 o f port 1
LCALL DELAY ; c a l l the de lay subrout ine
CLR P1 . 0 ; P1.0=0
LCALL DELAY
SJMP HERE ; keep doing i t

; ; Another way to wr i t e the above program i s :
;HERE: CPL P1 . 0 ; s e t to high b i t 0 o f port 1
;LCALL DELAY ; c a l l the de lay subrout ine
;SJMP HERE ; keep doing i t

;−−−−−−−th i s i s the de lay subrout ine−−−−−−
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex) , counter
AGAIN: DJNZ R5 ,AGAIN ; stay here un t i l R5 become 0
RET ; re turn to c a l l e r (when R5 =0)

SETB P1 . 2 ;make P1 . 2 an input
MOV A,#45H ;A=45H
AGAIN: JNB P1 . 2 ,AGAIN ; get out when P1.2=1
MOV P0 ,A ; i s s u e A to P0
SETB P2 . 3 ;make P2 . 3 high
CLR P2 .3 ;make P2 . 3 low f o r H−to−L

HERE: JNB P2 . 3 ,HERE ; keep monitor ing f o r high
SETB P1 . 5 ; s e t b i t P1.5=1
CLR P1 .5 ;make high−to−low
SJMP HERE ; keep repea t ing

SETB P1 . 7 ;make P1 . 7 an input
AGAIN: JB P1 . 2 ,OVER ; jump i f P1.7=1
MOV P2 , 'N' ;SW=0, i s s u e 'N' to P2
SJMP AGAIN ; keep monitor ing
OVER: MOV P2,# 'Y' ;SW=1, i s s u e 'Y' to P2
SJMP AGAIN ; keep monitor ing

MPMC Programs Milav Dabgar

MPMC Programs 19

SETB P1 . 7 ;make P1 . 7 an input
AGAIN: MOV C,P1 . 2 ; read SW sta tu s in to CF
JC OVER ; jump i f SW=1
MOV P2,# 'N' ;SW=0, i s s u e 'N' to P2
SJMP AGAIN ; keep monitor ing
OVER: MOV P2,# 'Y' ;SW=1, i s s u e 'Y' to P2
SJMP AGAIN ; keep monitor ing

SETB P1 . 7 ;make P1 . 7 an input
AGAIN: MOV C,P1 . 0 ; read SW sta tu s in to CF
MOV P2 . 7 ,C ; send SW sta tu s to LED
SJMP AGAIN ; keep repea t ing

1.1.2.16 Example 5-1 Write code to send 55H to ports P1 and P2, using (a) their names
(b) their addresses Solution :
; (a)
MOV A,#55H ;A=55H
MOV P1 ,A ; P1=55H
MOV P2 ,A ; P2=55H

; (b) From Table 5−1, P1 address=80H; P2 address=A0H
MOV A,#55H ;A=55H
MOV 80H,A ;P1=55H
MOV 0A0H,A ;P2=55H

1.1.2.17 Example 5-2 Show the code to push R5 and A onto the stack and then pop them
back them into R2 and B, where B = A and R2 = R5 Solution:
PUSH 05 ; push R5 onto stack
PUSH 0E0H ; push r e g i s t e r A onto stack
POP 0F0H ; pop top o f s tack in to B
; now r e g i s t e r B = r e g i s t e r A
POP 02 ; pop top o f s tack in to R2
; now R2=R6

1.1.2.18 Example 5-3 Write a program to copy the value 55H into RAM memory locations
40H to 41H using (a) direct addressing mode, (b) register indirect addressing mode without
a loop, and (c) with a loop Solution:
; (a)
MOV A,#55H ; load A with value 55H
MOV 40H,A ; copy A to RAM lo c a t i o n 40H
MOV 41H,A ; copy A to RAM lo c a t i o n 41H
; (b)
MOV A,#55H ; load A with value 55H
MOV R0,#40H ; load the po in t e r . R0=40H
MOV @R0,A ; copy A to RAM R0 po in t s to
INC R0 ; increment po in t e r . Now R0=41h
MOV @R0,A ; copy A to RAM R0 po in t s to
; (c)
MOV A,#55H ;A=55H
MOV R0,#40H ; load po in t e r .R0=40H,
MOV R2,#02 ; load counter , R2=3
AGAIN: MOV @R0,A ; copy 55 to RAM R0 po in t s to
INC R0 ; increment R0 po in t e r
DJNZ R2 ,AGAIN ; loop un t i l counter = zero

MPMC Programs Milav Dabgar

MPMC Programs 20

1.1.2.19 Example 5-4 Write a program to clear 16 RAM locations starting at RAM address
60H Solution:
CLR A ;A=0
MOV R1,#60H ; load po in t e r . R1=60H
MOV R7,#16 ; load counter , R7=16
AGAIN: MOV @R1,A ; c l e a r RAM R1 po in t s to
INC R1 ; increment R1 po in t e r
DJNZ R7 ,AGAIN ; loop un t i l counter=zero

1.1.2.20 Example 5-5 Write a program to copy a block of 10 bytes of data from 35H to
60H Solution:
MOV R0,#35H ; source po in t e r
MOV R1,#60H ; d e s t i n a t i on po in t e r
MOV R3,#10 ; counter
BACK: MOV A,@R0 ; get a byte from source
MOV @R1,A ; copy i t to d e s t i n a t i on
INC R0 ; increment source po in t e r
INC R1 ; increment d e s t i n a t i on po in t e r
DJNZ R3 ,BACK ; keep doing f o r ten bytes

1.1.2.21 Example 5-6 In this program, assume that the word “USA” is burned into ROM
locations starting at 200H. And that the program is burned into ROM locations starting at
0. Analyze how the program works and state where “USA” is stored after this program is
run. Solution:
ORG 0000H ; burn in to ROM s t a r t i n g at 0
MOV DPTR,#200H ;DPTR=200H look−up tab l e addr
CLR A ; c l e a r A(A=0)
MOVC A,@A+DPTR ; get the char from code space
MOV R0 ,A ; save i t in R0
INC DPTR ;DPTR=201 po int to next char
CLR A ; c l e a r A(A=0)
MOVC A,@A+DPTR ; get the next char
MOV R1 ,A ; save i t in R1
INC DPTR ;DPTR=202 po int to next char
CLR A ; c l e a r A(A=0)
MOVC A,@A+DPTR ; get the next char
MOV R2 ,A ; save i t in R2
Here : SJMP HERE ; stay here

; Data i s burned in to code space s t a r t i n g at 200H
ORG 200H
MYDATA:DB "USA"
END ; end o f program

1.1.2.22 Example 5-8 Write a program to get the x value from P1 and send x2 to P2,
continuously Solution:
ORG 0
MOV DPTR,#300H ;LOAD TABLE ADDRESS
MOV A,#0FFH ;A=FF
MOV P1 ,A ;CONFIGURE P1 INPUT PORT
BACK: MOV A,P1 ;GET X
MOVC A,@A+DPTR ;GET X SQAURE FROM TABLE
MOV P2 ,A ; ISSUE IT TO P2
SJMP BACK ;KEEP DOING IT

ORG 300H
XSQR_TABLE: DB 0 ,1 ,4 ,9 , 16 ,25 ,36 ,49 ,64 ,81
END

MPMC Programs Milav Dabgar

MPMC Programs 21

1.1.2.23 Example 5-10 Write a program to toggle P1 a total of 200 times. Use RAM
location 32H to hold your counter value instead of registers R0 - R7 Solution:

MOV P1,#55H ;P1=55H
MOV A, P1
MOV 32H,#200 ; load counter va lue in to RAM loc 32H
LOP1: CPL A ; t ogg l e P1
MOV P1 , A
ACALL DELAY
DJNZ 32H,LOP1 ; repeat 200 t imes

;−−−−−−−th i s i s the de lay subrout ine−−−−−−
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex) , counter
AGAIN: DJNZ R5 ,AGAIN ; stay here un t i l R5 become 0
RET ; re turn to c a l l e r (when R5 =0)

1.1.2.24 Example 5-24 A switch is connected to pin P1.7. Write a program to check the
status of the switch and make the following decision. (a) If SW = 0, send ‘0’ to P2 (b) If
SW = 1, send ‘1’ to P2 Solution:

SW EQU P1 .7
MYDATA EQU P2
HERE: MOV C,SW
JC OVER
MOV MYDATA,# '0 '
SJMP HERE
OVER: MOV MYDATA,# '1 '
SJMP HERE
END

1.1.2.25 Example 5-27 Assume that the on-chip ROM has a message. Write a program to
copy it from code space into the upper memory space starting at address 80H. Also, as you
place a byte in upper RAM, give a copy to P0. Solution:

ORG 0
MOV DPTR,#MYDATA
MOV R1,#80H ; a c c e s s the upper memory
B1 : CLR A
MOVC A,@A+DPTR ; copy from code ROM
MOV @R1,A ; s t o r e in upper memory
MOV P0 ,A ; g ive a copy to P0
JZ EXIT ; e x i t i f l a s t byte
INC DPTR ; increment DPTR
INC R1 ; increment R1
SJMP B1 ; repeat un t i l l a s t byte
EXIT : SJMP $; stay here when f i n i s h e d

;−−−−−−−−−−−−−−−
ORG 300H
MYDATA: DB "The Promise o f World Peace " , 0
END

1.1.2.26 Assume that RAM locations 40 - 44H have the following values. Write a program
to find the sum of the values. At the end of the program, register A should contain the
low byte and R7 the high byte. 40 = (7D), 41 = (EB), 42 = (C5), 43 = (5B), 44 = (30)
Solution:

MOV R0,#40H ; load po in t e r
MOV R2,#5 ; load counter
CLR A ;A=0

MPMC Programs Milav Dabgar

MPMC Programs 22

MOV R7 ,A ; c l e a r R7
AGAIN: ADD A,@R0 ; add the byte ptr to by R0
JNC NEXT ; i f CY=0 don ' t add carry
INC R7 ; keep track o f car ry
NEXT: INC R0 ; increment po in t e r
DJNZ R2 ,AGAIN ; repeat un t i l R2 i s ze ro

1.1.2.27 Write a program to add two 16-bit numbers. Place the sum in R7 and R6; R6
should have the lower byte. Solution:

CLR C ;make CY=0
MOV A, #0E7H ; load the low byte now A=E7H
ADD A, #8DH ; add the low byte
MOV R6 , A ; save the low byte sum in R6
MOV A, #3CH ; load the high byte
ADDC A, #3BH ; add with the car ry
MOV R7 , A ; save the high byte sum

1.1.2.28 Assume that 5 BCD data items are stored in RAM locations starting at 40H, as
shown below. Write a program to find the sum of all the numbers. The result must be in
BCD. 40=(71), 41=(11), 42=(65), 43=(59), 44=(37) Solution:

MOV R0,#40H ; Load po in t e r
MOV R2,#5 ; Load counter
CLR A ;A=0
MOV R7 ,A ; Clear R7
AGAIN: ADD A,@R0 ; add the byte po in t e r to by R0
DA A ; ad jus t f o r BCD
JNC NEXT ; i f CY=0 don ' t accumulate car ry
INC R7 ; keep track o f c a r r i e s
NEXT: INC R0 ; increment po in t e r
DJNZ R2 ,AGAIN ; repeat un t i l R2 i s 0

MOV A,#29H ;A=29H, packed BCD
MOV R2 ,A ; keep a copy o f BCD data
ANL A,#0FH ;mask the upper n ibb l e (A=09)
ORL A,#30H ;make i t an ASCII , A=39H(' 9 ')
MOV R6 ,A ; save i t
MOV A,R2 ;A=29H, get the o r i g i n a l data
ANL A,#0F0H ;mask the lower n ibb l e
RR A ; ro t a t e r i g h t
RR A ; ro t a t e r i g h t
RR A ; ro t a t e r i g h t
RR A ; ro t a t e r i g h t
ORL A,#30H ;A=32H, ASCII char . ' 2 '
MOV R2 ,A ; save ASCII char in R2

CLR P2 .3 ; Clear P2 . 3
MOV TMOD,#01 ; Timer 0 , 16−bitmode
HERE: MOV TL0,#3EH ;TL0=3Eh , the low byte
MOV TH0,#0B8H ;TH0=B8H, the high byte
SETB P2 . 3 ;SET high t imer 0
SETB TR0 ; Star t the t imer 0
AGAIN: JNB TF0 ,AGAIN ; Monitor t imer f l a g 0
CLR TR0 ; Stop the t imer 0
CLR TF0 ; Clear TF0 f o r next round
CLR P2 .3

MPMC Programs Milav Dabgar

MPMC Programs 23

Solution: (a) (FFFFH - B83E + 1) = 47C2H = 18370 in decimal and 18370 _ 1.085 us = 19.93145 ms
(b) Since TH - TL = B83EH = 47166 (in decimal) we have 65536 - 47166 = 18370. This means that the
timer counts from B38EH to FFFF. This plus Rolling over to 0 goes through a total of 18370 clock cycles,
where each clock is 1.085 us in duration. Therefore, we have 18370 _ 1.085 us = 19.93145 ms as the width
of the pulse.

1.1.2.31 Example 9-8 Modify TL and TH in Example 9-7 to get the largest time delay
possible. Find the delay in ms. In your calculation, exclude the overhead due to the
instructions in the loop. Solution: To get the largest delay we make TL and TH both 0. This will
count up from 0000 to FFFFH and then roll over to zero.
CLR P2 . 3 ; Clear P2 . 3
MOV TMOD,#01 ; Timer 0 , 16−bitmode
HERE: MOV TL0,#0 ;TL0=0, the low byte
MOV TH0,#0 ;TH0=0, the high byte
SETB P2 . 3 ;SET high P2 . 3
SETB TR0 ; Star t t imer 0
AGAIN: JNB TF0 ,AGAIN ; Monitor t imer f l a g 0
CLR TR0 ; Stop the t imer 0
CLR TF0 ; Clear t imer 0 f l a g
CLR P2 . 3

Making TH and TL both zero means that the timer will count from 0000 to FFFF, and then roll over to
raise the TF flag. As a result, it goes through a total Of 65536 states. Therefore, we have delay = (65536
- 0) * 1.085 us = 71.1065ms.

MOV TMOD,#10;Timer 1 , mod 1 (16−bitmode)
AGAIN: MOV TL1,#34H ;TL1=34H, low byte o f t imer
MOV TH1,#76H ;TH1=76H, high byte t imer
SETB TR1 ; s t a r t the t imer 1
BACK: JNB TF1 ,BACK ; t i l l t imer r o l l s over
CLR TR1 ; stop the t imer 1
CPL P1 . 5 ; comp . p1 . to get hi , l o
CLR TF1 ; c l e a r t imer f l a g 1
SJMP AGAIN ; i s not auto−re l oad

Solution: Since FFFFH - 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276 clock count and 35276 *
1.085 us = 38.274 ms for half of the square wave. The frequency = 13.064Hz. Also notice that the high
portion and low portion of the square wave pulse are equal. In the above calculation, the overhead due to
all the instruction in the loop is not included.

1.1.2.33 Example 9-10 Assume that XTAL = 11.0592 MHz. What value do we need to
load the timer’s register if we want to have a time delay of 5 ms (milliseconds)? Show the
program for timer 0 to create a pulse width of 5 ms on P2.3. Solution: Since XTAL = 11.0592
MHz, the counter counts up every 1.085 us. This means that out of many 1.085 us intervals we must
make a 5 ms pulse. To get that, we divide one by the other. We need 5 ms / 1.085 us = 4608 clocks. To
Achieve that we need to load into TL and TH the value 65536 - 4608 = EE00H. Therefore, we have TH =
EE and TL = 00.
CLR P2 . 3 ; Clear P2 . 3
MOV TMOD,#01 ; Timer 0 , 16−bitmode
HERE: MOV TL0,#0 ;TL0=0, the low byte
MOV TH0,#0EEH ;TH0=EE, the high byte
SETB P2 . 3 ;SET high P2 . 3
SETB TR0 ; Star t t imer 0
AGAIN: JNB TF0 ,AGAIN ; Monitor t imer f l a g 0
CLR TR0 ; Stop the t imer 0
CLR TF0 ; Clear t imer 0 f l a g

MPMC Programs Milav Dabgar

MPMC Programs 24

1.1.2.34 Example 9-11 Assume that XTAL = 11.0592 MHz, write a program to generate a
square wave of 2 kHz frequency on pin P1.5. Solution: This is similar to Example 9-10, except
that we must toggle the bit to generate the square wave. Look at the following steps.

• (a) T = 1 / f = 1 / 2 kHz = 500 us the period of square wave.

• (b) 1 / 2 of it for the high and low portion of the pulse is 250 us.

• (c) 250 us / 1.085 us = 230 and 65536 - 230 = 65306 which in hex is FF1AH.

• (d) TL = 1A and TH = FF, all in hex. The program is as follow.

MOV TMOD,#01 ; Timer 0 , 16−bitmode
AGAIN: MOV TL1,#1AH ;TL1=1A, low byte o f t imer
MOV TH1,#0FFH ;TH1=FF, the high byte
SETB TR1 ; Star t t imer 1
BACK: JNB TF1 ,BACK ; un t i l t imer r o l l s over
CLR TR1 ; Stop the t imer 1
CLR P1 . 5 ; Clear t imer f l a g 1
CLR TF1 ; Clear t imer 1 f l a g
SJMP AGAIN ; Reload t imer

1.1.2.35 Example 9-12 Assume XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 kHz frequency on pin P2.3. Solution: Look at the following steps.

• (a) T = 1 / 50 = 20 ms, the period of square wave.

• (b) 1 / 2 of it for the high and low portion of the pulse is 10 ms.

• (c) 10 ms / 1.085 us = 9216 and 65536 - 9216 = 56320 in decimal, and in hex it is DC00H.

• (d) TL = 00 and TH = DC (hex).

MOV TMOD,#10H ; Timer 1 , mod 1
AGAIN: MOV TL1,#00 ;TL1=00, low byte o f t imer
MOV TH1,#0DCH ;TH1=DC, the high byte
SETB TR1 ; Star t t imer 1
BACK: JNB TF1 ,BACK ; un t i l t imer r o l l s over
CLR TR1 ; Stop the t imer 1
CLR P2 . 3 ;Comp. p2 . 3 to get hi , l o
SJMP AGAIN ; Reload timer , mode 1 isn ' t auto−re l oad

MOV TMOD,#20H ;T1/8−b i t /auto r e l oad
MOV TH1,#5 ;TH1 = 5
SETB TR1 ; s t a r t the t imer 1
BACK: JNB TF1 ,BACK ; t i l l t imer r o l l s over
CPL P1 . 0 ; P1 . 0 to hi , l o
CLR TF1 ; c l e a r Timer 1 f l a g
SJMP BACK ;mode 2 i s auto−re l oad

Solution: First notice the target address of SJMP. In mode 2 we do not need to reload TH since it is
auto-reload. Now (256 - 05) _ 1.085 us = 251 _ 1.085 us = 272.33 us is the high portion of the pulse.
Since it is a 50% duty cycle square wave, the period T is twice that; as a result T = 2 * 272.33 us =
544.67 us and the frequency = 1.83597 kHz

1.1.2.37 Example 9-15 Find the frequency of a square wave generated on pin P1.0. Solution:

MOV TMOD,#2H ; Timer 0 , mod 2 (8−bit , auto r e l oad)
MOV TH0,#0
AGAIN: MOV R5,#250 ; mu l t ip l e de lay count
ACALL DELAY
CPL P1 . 0
SJMP AGAIN

MPMC Programs Milav Dabgar

MPMC Programs 25

DELAY: SETB TR0 ; s t a r t the t imer 0
BACK: JNB TF0 ,BACK ; stay t imer r o l l s over
CLR TR0 ; stop t imer
CLR TF0 ; c l e a r TF f o r next round
DJNZ R5 ,DELAY
RET ;T = 2 (250 ∗ 256 ∗ 1 .085 us) = 138.88ms , and frequency = 72 Hz

1.1.2.38 Example 9-18 Assuming that clock pulses are fed into pin T1, write a program
for counter 1 in mode 2 to count the pulses and display the state of the TL1 count on P2,
which connects to 8 LEDs. Solution:

MOV TMOD,#01100000B ; counter 1 , mode 2 , C/T=1 ex t e rna l pu l s e s
MOV TH1,#0 ; c l e a r TH1
SETB P3 . 5 ;make T1 input
AGAIN: SETB TR1 ; s t a r t the counter
BACK: MOV A,TL1 ; get copy o f TL
MOV P2 ,A ; d i sp l ay i t on port 2
JNB TF1 , Back ; keep doing , i f TF = 0
CLR TR1 ; stop the counter 1
CLR TF1 ;make TF=0
SJMP AGAIN ; keep doing i t

1.1.2.39 Write a program for the 8051 to transfer letter ‘A’ serially at 4800 baud, continu-
ously. Solution:

MOV TMOD,#20H ; t imer 1 ,mode 2(auto r e l oad)
MOV TH1,#−6 ;4800 baud ra t e
MOV SCON,#50H ;8−bit , 1 stop , REN enabled
SETB TR1 ; s t a r t t imer 1
AGAIN: MOV SBUF,#"A" ; l e t t e r 'A' to t r a n s f e r
HERE: JNB TI ,HERE ; wait f o r the l a s t b i t
CLR TI ; c l e a r TI f o r next char
SJMP AGAIN ; keep sending A

1.1.2.40 Write a program for the 8051 to transfer ‘YES’ serially at 9600 baud, 8-bit data,
1 stop bit, do this continuously Solution:

MOV TMOD,#20H ; t imer 1 ,mode 2(auto r e l oad)
MOV TH1,#−3 ;9600 baud ra t e
MOV SCON,#50H ;8−bit , 1 stop , REN enabled
SETB TR1 ; s t a r t t imer 1
AGAIN: MOV A,#"Y" ; t r a n s f e r 'Y'
ACALL TRANS
MOV A,#"E" ; t r a n s f e r 'E'
ACALL TRANS
MOV A,#"S" ; t r a n s f e r 'S '
ACALL TRANS
SJMP AGAIN ; keep doing i t
; s e r i a l data t r a n s f e r subrout ine
TRANS: MOV SBUF,A ; load SBUF
HERE: JNB TI ,HERE ; wait f o r the l a s t b i t
CLR TI ; get ready f o r next byte
RET

1.1.2.41 Write a program for the 8051 to receive bytes of data serially, and put them in
P1, set the baud rate at 4800, 8-bit data, and 1 stop bit Solution:

MOV TMOD,#20H ; t imer 1 ,mode 2(auto r e l oad)
MOV TH1,#−6 ;4800 baud ra t e
MOV SCON,#50H ;8−bit , 1 stop , REN enabled

MPMC Programs Milav Dabgar

MPMC Programs 26

SETB TR1 ; s t a r t t imer 1
HERE: JNB RI ,HERE ; wait f o r char to come in
MOV A,SBUF ; sav ing incoming byte in A
MOV P1 ,A ; send to port 1
CLR RI ; get ready to r e c e i v e next byte
SJMP HERE ; keep g e t t i n g data

1.1.2.42 Example 10-5 Assume that the 8051 serial port is connected to the COM port of
IBM PC, and on the PC, we are using the terminal.exe program to send and receive data
serially. P1 and P2 of the 8051 are connected to LEDs and switches, respectively. Write an
8051 program to: (a) send to PC the message “We Are Ready”. (b) receive any data send
by PC and put it on LEDs connected to P1, and (c) get data on switches connected to P2
and send it to PC serially. The program should perform part (a) once, but parts (b) and (c)
continuously, use 4800 baud rate. Solution:
ORG 0
MOV P2,#0FFH ;make P2 an input port
MOV TMOD,#20H ; t imer 1 , mode 2
MOV TH1,#0FAH ;4800 baud ra t e
MOV SCON,#50H ;8−bit , 1 stop , REN enabled
SETB TR1 ; s t a r t t imer 1
MOV DPTR,#MYDATA ; load po in t e r f o r message
H_1: CLR A
MOVC A,@A+DPTR ; get the charac t e r
JZ B_1 ; i f l a s t cha rac t e r get out
ACALL SEND ; otherwi se c a l l t r a n s f e r
INC DPTR ; next one
SJMP H_1 ; stay in loop
B_1: MOV a ,P2 ; read data on P2
ACALL SEND ; t r a n s f e r i t s e r i a l l y
ACALL RECV ; get the s e r i a l data
MOV P1 ,A ; d i sp l ay i t on LEDs
SJMP B_1 ; stay in loop i n d e f i n i t e l y

;−−−−s e r i a l data t r a n s f e r . ACC has the data−−−−−−
SEND: MOV SBUF,A ; load the data
H_2: JNB TI ,H_2 ; stay here un t i l l a s t b i t gone
CLR TI ; get ready f o r next char
RET ; re turn to c a l l e r

;−−−−Receive data s e r i a l l y in ACC−−−−−−−−−−−−−−−−
RECV: JNB RI ,RECV ; wait here f o r char
MOV A,SBUF ; save i t in ACC
CLR RI ; get ready f o r next char
RET ; re turn to c a l l e r

;−−−−−The message−−−−−−−−−−−−−−−
MYDATA: DB "We Are Ready " ,0
END

1.1.2.43 Example 10-6 Assume that XTAL = 11.0592 MHz for the following program, state
(a) what this program does, (b) compute the frequency used by timer 1 to set the baud
rate, and (c) find the baud rate of the data transfer. Solution:

• (a) This program transfers ASCII letter B (01000010 binary) continuously

• (b) With XTAL = 11.0592 MHz and SMOD = 1 in the above program,

• we have: 11.0592 / 12 = 921.6 kHz

• machine cycle frequency. 921.6 / 16 = 57,600 Hz

• frequency used by timer 1 to set the baud rate.57600 / 3 = 19,200, the baud rate.

MPMC Programs Milav Dabgar

MPMC Programs 27

MOV A,PCON ;A=PCON
MOV ACC.7 ;make D7=1
MOV PCON,A ;SMOD=1, double baud ra t e with same XTAL f r e q .
MOV TMOD,#20H ; t imer 1 , mode 2
MOV TH1,−3 ;19200 (57600/3 =19200)
MOV SCON,#50H ;8− b i t data , 1 stop bit , RI enabled
SETB TR1 ; s t a r t t imer 1
MOV A,# 'B' ; t r a n s f e r l e t t e r B
A_1: CLR TI ;make sure TI=0
MOV SBUF,A ; t r a n s f e r i t
H_1: JNB TI ,H_1 ; stay here un t i l the l a s t b i t i s gone
SJMP A_1 ; keep sending 'B' again

1.1.2.44 Example 10-10 Write a program to send the message “The Earth is but One
Country” to serial port. Assume a SW is connected to pin P1.2. Monitor its status and set
the baud rate as follows: SW = 0, 4800 baud rate, SW = 1, 9600 baud rate Assume XTAL
= 11.0592 MHz, 8-bit data, and 1 stop bit. Solution:
SW BIT P1 . 2
ORG 0H ; s t a r t i n g po s i t i o n
MAIN:
MOV TMOD,#20H
MOV TH1,#−6 ;4800 baud ra t e (d e f au l t)
MOV SCON,#50H
SETB TR1
SETB SW ;make SW an input
S1 : JNB SW,SLOWSP ; check SW sta tu s
MOV A,PCON ; read PCON
SETB ACC.7 ; s e t SMOD high f o r 9600
MOV PCON,A ; wr i t e PCON
SJMP OVER ; send message

SLOWSP:
MOV A,PCON ; read PCON
SETB ACC.7 ; s e t SMOD low f o r 4800
MOV PCON,A ; wr i t e PCON
OVER: MOV DPTR,#MESS1 ; load address to message
FN: CLR A
MOVC A,@A+DPTR ; read value
JZ S1 ; check f o r end o f l i n e
ACALL SENDCOM ; send value to s e r i a l port
INC DPTR ;move to next va lue
SJMP FN ; repeat
;−−−−−−−−−−−−
SENDCOM:
MOV SBUF,A ; p lace value in bu f f e r
HERE: JNB TI ,HERE ; wait u n t i l t ransmit ted
CLR TI ; c l e a r
RET ; re turn
;−−−−−−−−−−−−
MESS1 : DB "The Earth i s but One Country " , 0
END

1.1.2.45 Example 11-2 Write a program that continuously get 8-bit data from P0 and sends
it to P1 while simultaneously creating a square wave of 200 us period on pin P2.1. Use
timer 0 to create the square wave. Assume that XTAL = 11.0592 MHz. Solution:
;We w i l l use t imer 0 in mode 2 (auto r e l oad) . TH0 = 100/1.085 us = 92
;−−upon wake−up go to main , avoid us ing
;memory a l l o c a t e d to In t e r rup t Vector Table

MPMC Programs Milav Dabgar

MPMC Programs 28

ORG 0000H
LJMP MAIN ; by−pass i n t e r r up t vec to r t ab l e

;−−ISR f o r t imer 0 to generate square wave
ORG 000BH ; Timer 0 i n t e r r up t vec to r t ab l e
CPL P2 . 1 ; t o gg l e P2 . 1 pin
RETI ; re turn from ISR

;−−The main program f o r i n i t i a l i z a t i o n
ORG 0030H ; a f t e r vec to r t ab l e space
MAIN: MOV TMOD,#02H ; Timer 0 , mode 2
MOV P0,#0FFH ;make P0 an input port
MOV TH0,#−92 ;TH0=A4H f o r −92
MOV IE ,#82H ; IE=10000010 (bin) enable Timer 0
SETB TR0 ; Star t Timer 0
BACK: MOV A,P0 ; get data from P0
MOV P1 ,A ; i s s u e i t to P1
SJMP BACK ; keep doing i t loop un l e s s i n t e r rup t ed by TF0
END

1.1.2.46 Example 11-3 Rewrite Example 11-2 to create a square wave that has a high
portion of 1085 us and a low portion of 15 us. Assume XTAL=11.0592MHz. Use timer 1.
Solution: Since 1085 us is 1000 * 1.085 we need to use mode 1 of timer 1. upon wake-up go to main,
avoid using memory allocated to Interrupt Vector Table
ORG 0000H
LJMP MAIN ; by−pass i n t . vec to r t ab l e
;−−ISR f o r t imer 1 to generate square wave
ORG 001BH ; Timer 1 i n t . vec to r t ab l e
LJMP ISR_T1 ; jump to ISR

;−−The main program f o r i n i t i a l i z a t i o n
ORG 0030H ; a f t e r vec to r t ab l e space
MAIN: MOV TMOD,#10H ; Timer 1 , mode 1
MOV P0,#0FFH ;make P0 an input port
MOV TL1,#018H ;TL1=18 low byte o f −1000
MOV TH1,#0FCH ;TH1=FC high byte o f −1000
MOV IE ,#88H ;10001000 enable Timer 1 i n t
SETB TR1 ; Star t Timer 1
BACK: MOV A,P0 ; get data from P0
MOV P1 ,A ; i s s u e i t to P1
SJMP BACK ; keep doing i t
; Timer 1 ISR . Must be re loaded , not auto−re l oad
ISR_T1 : CLR TR1 ; stop Timer 1
MOV R2,#4 ; 2MC
CLR P2 .1 ; P2.1=0 , s t a r t o f low por t i on
HERE: DJNZ R2 ,HERE ;4 x2 machine cy c l e 8MC
MOV TL1,#18H ; load T1 low byte value 2MC
MOV TH1,#0FCH; load T1 high byte va lue 2MC
SETB TR1 ; s t a r t s t imer1 1MC
SETB P2 . 1 ; P2.1=1 , back to high 1MC
RETI ; re turn to main
END

1.1.2.47 Example 11-5 Assume that the INT1 pin is connected to a switch that is normally
high. Whenever it goes low, it should turn on an LED. The LED is connected to P1.3 and
is normally off. When it is turned on it should stay on for a fraction of a second. As long as
the switch is pressed low, the LED should stay on. Solution:
ORG 0000H
LJMP MAIN ; by−pass i n t e r r up t vec to r t ab l e

MPMC Programs Milav Dabgar

MPMC Programs 29

;−−ISR f o r INT1 to turn on LED
ORG 0013H ; INT1 ISR
SETB P1 . 3 ; turn on LED
MOV R3,#255
BACK: DJNZ R3 ,BACK ; keep LED on f o r a whi l e
CLR P1 . 3 ; turn o f f the LED
RETI ; re turn from ISR
;−−MAIN program f o r i n i t i a l i z a t i o n
ORG 30H
MAIN: MOV IE ,#10000100B ; enable ex t e rna l INT 1
HERE: SJMP HERE ; stay here un t i l get i n t e r rup t ed
END

1.1.2.48 Assume that pin 3.3 (INT1) is connected to a pulse generator, write a program in
which the falling edge of the pulse will send a high to P1.3, which is connected to an LED
(or buzzer). In other words, the LED is turned on and off at the same rate as the pulses are
applied to the INT1 pin. Solution:
ORG 0000H
LJMP MAIN
;−−ISR f o r hardware i n t e r r up t INT1 to turn on LED
ORG 0013H ; INT1 ISR
SETB P1 . 3 ; turn on LED
MOV R3,#255
BACK: DJNZ R3 ,BACK ; keep the buzzer on f o r a whi l e
CLR P1 . 3 ; turn o f f the buzzer
RETI ; re turn from ISR
;−−−−−−MAIN program f o r i n i t i a l i z a t i o n
ORG 30H
MAIN: SETB TCON.2 ;make INT1 edge−t r i g g e r e d i n t .
MOV IE ,#10000100B ; enable External INT 1
HERE: SJMP HERE ; stay here un t i l get i n t e r rup t ed
END

1.1.2.49 Example 11-8 Write a program in which the 8051 reads data from P1 and writes
it to P2 continuously while giving a copy of it to the serial COM port to be transferred
serially. Assume that XTAL=11.0592. Set the baud rate at 9600. Solution:
ORG 0000H
LJMP MAIN
ORG 23H
LJMP SERIAL ; jump to s e r i a l i n t ISR
ORG 30H
MAIN: MOV P1,#0FFH ;make P1 an input port
MOV TMOD,#20H ; t imer 1 , auto r e l oad
MOV TH1,#0FDH ;9600 baud ra t e
MOV SCON,#50H ;8−bit , 1 stop , ren enabled
MOV IE ,10010000B ; enable s e r i a l i n t .
SETB TR1 ; s t a r t t imer 1
BACK: MOV A,P1 ; read data from port 1
MOV SBUF,A ; g ive a copy to SBUF
MOV P2 ,A ; send i t to P2
SJMP BACK ; stay in loop i n d e f i n i t e l y

;−−−−−−−−−−−−−−−−−SERIAL PORT ISR
ORG 100H
SERIAL : JB TI ,TRANS; jump i f TI i s high
MOV A,SBUF ; otherwi se due to r e c e i v e
CLR RI ; c l e a r RI s i n c e CPU doesn ' t
RETI ; re turn from ISR
TRANS: CLR TI ; c l e a r TI s i n c e CPU doesn ' t

MPMC Programs Milav Dabgar

MPMC Programs 30

RETI ; re turn from ISR
END

1.1.2.50 Example 11-9 Write a program in which the 8051 gets data from P1 and sends it
to P2 continuously while incoming data from the serial port is sent to P0. Assume that
XTAL=11.0592. Set the baud rata at 9600. Solution:
ORG 0000H
LJMP MAIN
ORG 23H
LJMP SERIAL ; jump to s e r i a l i n t ISR
ORG 30H
MAIN: MOV P1,#0FFH ;make P1 an input port
MOV TMOD,#20H ; t imer 1 , auto r e l oad
MOV TH1,#0FDH ;9600 baud ra t e
MOV SCON,#50H ;8−bit , 1 stop , ren enabled
MOV IE ,10010000B ; enable s e r i a l i n t .
SETB TR1 ; s t a r t t imer 1
BACK: MOV A,P1 ; read data from port 1
MOV P2 ,A ; send i t to P2
SJMP BACK ; stay in loop i n d e f i n i t e l y

;−−−−−−−−−−−−−−−−−SERIAL PORT ISR
ORG 100H
SERIAL : JB TI ,TRANS; jump i f TI i s high
MOV A,SBUF ; otherwi se due to r e c e i v e
MOV P0 ,A ; send incoming data to P0
CLR RI ; c l e a r RI s i n c e CPU doesn ' t
RETI ; re turn from ISR
TRANS: CLR TI ; c l e a r TI s i n c e CPU doesn ' t
RETI ; re turn from ISR
END

1.1.2.51 Example 11-10 Write a program using interrupts to do the following: (a) Receive
data serially and sent it to P0, (b) Have P1 port read and transmitted serially, and a copy
given to P2, (c) Make timer 0 generate a square wave of 5kHz frequency on P0.1. Assume
that XTAL-11,0592. Set the baud rate at 4800. Solution:
ORG 0
LJMP MAIN
ORG 000BH ; ISR f o r t imer 0
CPL P0 . 1 ; t o gg l e P0 . 1
RETI ; re turn from ISR
ORG 23H ;
LJMP SERIAL ; jump to s e r i a l i n t e r r up t ISR
ORG 30H
MAIN: MOV P1,#0FFH ;make P1 an input port
MOV TMOD,#22H; t imer 1 ,mode 2(auto r e l oad)
MOV TH1,#0F6H;4800 baud ra t e
MOV SCON,#50H;8−bit , 1 stop , ren enabled
MOV TH0,#−92 ; f o r 5kHZ wave
MOV IE ,10010010B ; enable s e r i a l i n t .
SETB TR1 ; s t a r t t imer 1
SETB TR0 ; s t a r t t imer 0
BACK: MOV A,P1 ; read data from port 1
MOV SBUF,A ; g ive a copy to SBUF
MOV P2 ,A ; send i t to P2
SJMP BACK ; stay in loop i n d e f i n i t e l y
;−−−−−−−−−−−−−−−−−SERIAL PORT ISR
ORG 100H
SERIAL : JB TI ,TRANS; jump i f TI i s high

MPMC Programs Milav Dabgar

MPMC Programs 31

MOV A,SBUF ; otherwi se due to r e c e i v e
MOV P0 ,A ; send s e r i a l data to P0
CLR RI ; c l e a r RI s i n c e CPU doesn ' t
RETI ; re turn from ISR
TRANS: CLR TI ; c l e a r TI s i n c e CPU doesn ' t
RETI ; re turn from ISR
END

ORG 0

MOV A,#38H ; INIT . LCD 2 LINES , 5X7 MATRIX
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,#0EH ; d i sp l ay on , cur so r on
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,#01 ; c l e a r LCD
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,#06H ; s h i f t cu r so r r i g h t
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,#84H ; cur so r at l i n e 1 , pos . 4
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,# 'N' ; d i sp l ay l e t t e r N
ACALL DATAWRT ; c a l l d i sp l ay subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,# 'O' ; d i sp l ay l e t t e r O
ACALL DATAWRT ; c a l l d i sp l ay subrout ine
AGAIN: SJMP AGAIN ; stay here

COMNWRT: ; send command to LCD
MOV P1 ,A ; copy reg A to port 1
CLR P2 . 0 ;RS=0 f o r command
CLR P2 .1 ;R/W=0 f o r wr i t e
SETB P2 . 2 ;E=1 f o r high pu l s e
CLR P2 . 2 ;E=0 f o r H−to−L pu l s e
RET

DATAWRT: ; wr i t e data to LCD
MOV P1 ,A ; copy reg A to port 1
CLR P2 . 0 ;RS=0 f o r command
CLR P2 .1 ;R/W=0 f o r wr i t e
SETB P2 . 2 ;E=1 f o r high pu l s e
CLR P2 . 2 ;E=0 f o r H−to−L pu l s e
RET

DELAY: MOV R3,#50 ;50 or h igher f o r f a s t CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4 ,HERE ; stay un t i l R4 becomes 0

DJNZ R3 ,HERE2
RET
END

MPMC Programs Milav Dabgar

MPMC Programs 32

ORG 0
MOV A,#38H ; i n i t . LCD 2 l i n e s ,5 x7 matrix
ACALL COMMAND ; i s s u e command
MOV A,#0EH ;LCD on , cur so r on
ACALL COMMAND ; i s s u e command
MOV A,#01H ; c l e a r LCD command
ACALL COMMAND ; i s s u e command
MOV A,#06H ; s h i f t cu r so r r i g h t
ACALL COMMAND ; i s s u e command
MOV A,#86H ; cur so r : l i n e 1 , pos . 6
ACALL COMMAND ; command subrout ine
MOV A,# 'N' ; d i sp l ay l e t t e r N
ACALL DATA_DISPLAY
MOV A,# 'O' ; d i sp l ay l e t t e r O
ACALL DATA_DISPLAY
HERE:SJMP HERE ;STAY HERE

COMMAND:
ACALL READY ; i s LCD ready ?
MOV P1 ,A ; i s s u e command code
CLR P2 .0 ;RS=0 f o r command
CLR P2 .1 ;R/W=0 to wr i t e to LCD
SETB P2 .2 ;E=1 f o r H−to−L pu l s e
CLR P2 . 2 ;E=0, l a t ch in
RET

DATA_DISPLAY:
ACALL READY ; i s LCD ready ?
MOV P1 ,A ; i s s u e data
SETB P2 .0 ;RS=1 f o r data
CLR P2 . 1 ;R/W =0 to wr i t e to LCD
SETB P2 .2 ;E=1 f o r H−to−L pu l s e
CLR P2 . 2 ;E=0, l a t ch in
RET

READY:
SETB P1 . 7 ;make P1 . 7 input port
CLR P2 . 0 ;RS=0 acc e s s command reg
SETB P2 . 1 ;R/W=1 read command reg

; read command reg and check busy f l a g
BACK:SETB P2 . 2 ;E=1 f o r H−to−L pu l s e

CLR P2 . 2 ;E=0 H−to−L pu l s e
JB P1 . 7 ,BACK ; stay un t i l busy f l a g=0
RET
END

ORG 0H

MOV A,#38H ; INIT . LCD 2 LINES , 5X7 MATRIX
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,#0EH ; d i sp l ay on , cur so r on
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,#01 ; c l e a r LCD
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MPMC Programs Milav Dabgar

MPMC Programs 33

MOV A,#06H ; s h i f t cu r so r r i g h t
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,#84H ; cur so r at l i n e 1 , pos . 4
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,# 'N' ; d i sp l ay l e t t e r N
ACALL DATAWRT ; c a l l d i sp l ay subrout ine
ACALL DELAY ; g ive LCD some time

MOV A,# 'O' ; d i sp l ay l e t t e r O
ACALL DATAWRT ; c a l l d i sp l ay subrout ine
AGAIN: SJMP AGAIN ; stay here

COMNWRT: ; send command to LCD
MOV P1 ,A ; copy reg A to port 1
CLR P2 . 0 ;RS=0 f o r command
CLR P2 .1 ;R/W=0 f o r wr i t e
SETB P2 .2 ;E=1 f o r high pu l s e
ACALL DELAY ; g ive LCD some time
CLR P2 .2 ;E=0 f o r H−to−L pu l s e
RET

DATAWRT: ; wr i t e data to LCD
MOV P1 ,A ; copy reg A to port 1
SETB P2 . 0 ;RS=1 f o r data
CLR P2 . 1 ;R/W=0 f o r wr i t e
SETB P2 . 2 ;E=1 f o r high pu l s e
ACALL DELAY ; g ive LCD some time
CLR P2 .2 ;E=0 f o r H−to−L pu l s e
RET

DELAY: MOV R3,#50 ;50 or h igher f o r f a s t CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4 ,HERE ; stay un t i l R4 becomes 0
DJNZ R3 ,HERE2
RET
END

ORG 0H

MOV A,#38H ; i n i t . LCD 2 l i n e s ,5 x7 matrix
ACALL COMMAND ; i s s u e command

MOV A,#0EH ;LCD on , cur so r on
ACALL COMMAND ; i s s u e command

MOV A,#01H ; c l e a r LCD command
ACALL COMMAND ; i s s u e command

MOV A,#06H ; s h i f t cu r so r r i g h t
ACALL COMMAND ; i s s u e command

MOV A,#86H ; cur so r : l i n e 1 , pos . 6
ACALL COMMAND ; command subrout ine

MOV A,# 'N' ; d i sp l ay l e t t e r N
ACALL DATA_DISPLAY

MPMC Programs Milav Dabgar

MPMC Programs 34

MOV A,# 'O' ; d i sp l ay l e t t e r O
ACALL DATA_DISPLAY
HERE:SJMP HERE ;STAY HERE

COMMAND:
ACALL READY ; i s LCD ready ?
MOV P1 ,A ; i s s u e command code
CLR P2 .0 ;RS=0 f o r command
CLR P2 .1 ;R/W=0 to wr i t e to LCD
SETB P2 .2 ;E=1 f o r H−to−L pu l s e
CLR P2 . 2 ;E=0, l a t ch in
RET

DATA_DISPLAY:
ACALL READY ; i s LCD ready ?
MOV P1 ,A ; i s s u e data
SETB P2 .0 ;RS=1 f o r data
CLR P2 . 1 ;R/W =0 to wr i t e to LCD
SETB P2 .2 ;E=1 f o r H−to−L pu l s e
CLR P2 . 2 ;E=0, l a t ch in
RET

READY:
SETB P1 .7 ;make P1 . 7 input port
CLR P2 . 0 ;RS=0 acc e s s command reg
SETB P2 .1 ;R/W=1 read command reg
; read command reg and check busy f l a g

BACK:SETB P2 . 2 ;E=1 f o r H−to−L pu l s e
CLR P2 . 2 ;E=0 H−to−L pu l s e
JB P1 . 7 ,BACK ; stay un t i l busy f l a g=0
RET
END

ORG 0
MOV DPTR,#MYCOM
C1 : CLR A

MOVC A,@A+DPTR
ACALL COMNWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time
INC DPTR
JZ SEND_DAT
SJMP C1

SEND_DAT:
MOV DPTR,#MYDATA
D1 : CLR A

MOVC A,@A+DPTR
ACALL DATAWRT ; c a l l command subrout ine
ACALL DELAY ; g ive LCD some time
INC DPTR
JZ AGAIN
SJMP D1

AGAIN: SJMP AGAIN ; stay here

COMNWRT: ; send command to LCD
MOV P1 ,A ; copy reg A to P1
CLR P2 .0 ;RS=0 f o r command
CLR P2 .1 ;R/W=0 f o r wr i t e
SETB P2 . 2 ;E=1 f o r high pu l s e
ACALL DELAY ; g ive LCD some time
CLR P2 .2 ;E=0 f o r H−to−L pu l s e
RET

MPMC Programs Milav Dabgar

MPMC Programs 35

DATAWRT: ; wr i t e data to LCD
MOV P1 ,A ; copy reg A to port 1
SETB P2 . 0 ;RS=1 f o r data
CLR P2 . 1 ;R/W=0 f o r wr i t e
SETB P2 . 2 ;E=1 f o r high pu l s e
ACALL DELAY ; g ive LCD some time
CLR P2 .2 ;E=0 f o r H−to−L pu l s e
RET

DELAY: MOV R3,#250 ;50 or h igher f o r f a s t CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4 ,HERE ; stay un t i l R4 becomes 0
DJNZ R3 ,HERE2
RET

;ORG 300H
;MYCOM: DB 38H,0EH,01 ,06 ,84H,0 ; commands and nu l l
;MYDATA: DB "HELLO" ,0
;END

MOV P2,#0FFH ;make P2 an input port
K1 : MOV P1,#0 ; ground a l l rows at once
MOV A,P2 ; read a l l c o l
; (ensure keys open)
ANL A,00001111B ; masked unused b i t s
CJNE A,#00001111B,K1 ; t i l l a l l keys r e l e a s e
K2 : ACALL DELAY ; c a l l 20 msec de lay
MOV A,P2 ; s ee i f any key i s pre s sed
ANL A,00001111B ;mask unused b i t s
CJNE A,#00001111B,OVER; key pressed , f i nd row
SJMP K2 ; check t i l l key pre s sed
OVER: ACALL DELAY ; wait 20 msec debounce time
MOV A,P2 ; check key c l o s u r e
ANL A,00001111B ;mask unused b i t s
CJNE A,#00001111B,OVER1; key pressed , f i nd row
SJMP K2 ; i f none , keep p o l l i n g
OVER1: MOV P1 , #11111110B ; ground row 0
MOV A,P2 ; read a l l columns
ANL A,#00001111B ;mask unused b i t s
CJNE A,#00001111B,ROW_0 ; key row 0 , f i nd co l .
MOV P1,#11111101B ; ground row 1
MOV A,P2 ; read a l l columns
ANL A,#00001111B ;mask unused b i t s
CJNE A,#00001111B,ROW_1 ; key row 1 , f i nd co l .
MOV P1,#11111011B ; ground row 2
MOV A,P2 ; read a l l columns
ANL A,#00001111B ;mask unused b i t s
CJNE A,#00001111B,ROW_2 ; key row 2 , f i nd co l .
MOV P1,#11110111B ; ground row 3
MOV A,P2 ; read a l l columns
ANL A,#00001111B ;mask unused b i t s
CJNE A,#00001111B,ROW_3 ; key row 3 , f i nd co l .
LJMP K2 ; i f none , f a l s e input , r epeat

ROW_0: MOV DPTR,#KCODE0 ; s e t DPTR=s t a r t o f row 0
SJMP FIND ; f i nd co l . Key be longs to
ROW_1: MOV DPTR,#KCODE1 ; s e t DPTR=s t a r t o f row
SJMP FIND ; f i nd co l . Key be longs to
ROW_2: MOV DPTR,#KCODE2 ; s e t DPTR=s t a r t o f row 2
SJMP FIND ; f i nd co l . Key be longs to

MPMC Programs Milav Dabgar

MPMC Programs 36

ROW_3: MOV DPTR,#KCODE3 ; s e t DPTR=s t a r t o f row 3
FIND: RRC A ; see i f any CY b i t low
JNC MATCH ; i f zero , get ASCII code
INC DPTR ; po int to next c o l . addr
SJMP FIND ; keep sea r ch ing
MATCH: CLR A ; s e t A=0 (match i s found)
MOVC A,@A+DPTR ; get ASCII from tab l e
MOV P0 ,A ; d i sp l ay pre s s ed key
LJMP K1

; ASCII LOOK−UP TABLE FOR EACH ROW
ORG 300H
KCODE0: DB ' 0 ' , ' 1 ' , ' 2 ' , ' 3 ' ;ROW 0
KCODE1: DB ' 4 ' , ' 5 ' , ' 6 ' , ' 7 ' ;ROW 1
KCODE2: DB '8 ' , ' 9 ' , 'A' , 'B' ;ROW 2
KCODE3: DB 'C' , 'D' , 'E' , 'F ' ;ROW 3

;−−−−−−−−−− th i s i s de lay subrout ine −−−−−−−−−−−−
ORG 400H ; put DELAY at address 300H
DELAY: MOV R5,#0FFH ;R5=255 (FF in hex) , counter
AGAIN: DJNZ R5 ,AGAIN ; stay here un t i l R5 become 0
RET ; re turn to c a l l e r (when R5 =0)

END

1.2 Embedded C Programs

1.2.1 Mazidi Book C Programs

#include <reg51 . h>
void main (void)
{

unsigned char z ;
for (z = 0 ; z <= 255 ; z++)

P1 = z ;
}

#include <reg51 . h>
void main (void)
{

unsigned char mynum [] = " 012345ABCD" ;
unsigned char z ;
for (z = 0 ; z <= 10 ; z++)

P1 = mynum[z] ;
}

// Toggle P1 f o r e v e r
#include <reg51 . h>
void main (void)
{

for (; ;)
{

P1 = 0x55 ;

MPMC Programs Milav Dabgar

MPMC Programs 37

P1 = 0xAA;
}

}

// Singed numbers
#include <reg51 . h>
void main (void)
{

char mynum [] = {+1, −1, +2, −2, +3, −3, +4, −4};
unsigned char z ;
for (z = 0 ; z <= 8 ; z++)

P1 = mynum[z] ;
}

#include <reg51 . h>
sb i t MYBIT = P1 ^ 0 ;
void main (void)
{

unsigned int z ;
for (z = 0 ; z <= 50000; z++)
{

MYBIT = 0 ;
MYBIT = 1 ;

}
}

// Toggle P1 f o r e v e r wi th some de lay in between
// " on " and " o f f "
#include <reg51 . h>
void main (void)
{

unsigned int x ;
for (; ;) // repea t f o r e v e r
{

P1 = 0x55 ;
for (x = 0 ; x < 40000; x++)

; // de lay s i z e
// unknown
P1 = 0xAA;
for (x = 0 ; x < 40000; x++)

;
}

}

#include <reg51 . h>
void MSDelay(unsigned int) ;
void main (void)
{

while (1) // repea t f o r e v e r
{

P1 = 0x55 ;
MSDelay (250) ;

MPMC Programs Milav Dabgar

MPMC Programs 38

P1 = 0xAA;
MSDelay (250) ;

}
}

void MSDelay(unsigned int i t ime)
{

unsigned int i , j ;
for (i = 0 ; i < i t ime ; i++)

for (j = 0 ; j < 1275 ; j++)
;

}

#include <reg51 . h>
#define LED P2
void main (void)
{

P1 = 00 ; // c l e a r P1
LED = 0 ; // c l e a r P2
for (; ;) // repea t f o r e v e r
{

P1++; // increment P1
LED++; // increment P2

}
}

#include <reg51 . h>
void MSDelay(unsigned int) ;

void main (void)
{

unsigned char mybyte ;
P1 = 0xFF ; // make P1 input por t
while (1)
{

mybyte = P1 ; // ge t a by t e from P1
MSDelay (500) ;
P2 = mybyte ; // send i t to P2

}
}

void MSDelay(unsigned int i t ime)
{

unsigned int i , j ;
for (i = 0 ; i < i t ime ; i++)

for (j = 0 ; j < 1275 ; j++)
;

}

#include <reg51 . h>
void main (void)
{

unsigned char mybyte ;
P0 = 0xFF ; // make P0 input por t

MPMC Programs Milav Dabgar

MPMC Programs 39

while (1)
{

mybyte = P0 ; // ge t a by t e from P0
i f (mybyte < 100)

P1 = mybyte ; // send i t to P1
else

P2 = mybyte ; // send i t to P2
}

}

// Togg l ing an i n d i v i d u a l b i t
#include <reg51 . h>
sb i t mybit = P2 ^ 4 ;
void main (void)
{

while (1)
{

mybit = 1 ; // turn on P2 .4
mybit = 0 ; // turn o f f P2 .4

}
}

#include <reg51 . h>
sb i t mybit = P1 ^ 5 ;
void main (void)
{

mybit = 1 ; // make mybit an input
while (1)
{

i f (mybit == 1)
P0 = 0x55 ;

else
P2 = 0xAA;

}
}

#include <reg51 . h>
void MSDelay(unsigned int) ;
s b i t Dsensor = P1 ^ 1 ;
s b i t Buzzer = P1 ^ 7 ;

void main (void)
{

Dsensor = 1 ; // make P1 .1 an input
while (1)
{

while (Dsensor == 1) // wh i l e i t opens
{

Buzzer = 0 ;
MSDelay (200) ;
Buzzer = 1 ;
MSDelay (200) ;

}
}

MPMC Programs Milav Dabgar

MPMC Programs 40

}
void MSDelay(unsigned int i t ime)
{

unsigned int i , j ;
for (i = 0 ; i < i t ime ; i++)

for (j = 0 ; j < 1275 ; j++)
;

}

#include <reg51 . h>
#define LCDData P1 // LCDData d e c l a r a t i o n
s b i t En = P2 ^ 0 ; // the enab l e pin

void main (void)
{

unsigned char message [] = "The␣Earth␣ i s ␣but␣One␣Country " ;
unsigned char z ;
for (z = 0 ; z < 28 ; z++) // send 28 charac t e r s
{

LCDData = message [z] ;
En = 1 ; // a highEn=0; //−to−low pu l s e to l a t c h data

}
}

// Access ing Ports as SFRs us ing s f r data type
s f r P0 = 0x80 ;
s f r P1 = 0x90 ;
s f r P2 = 0xA0 ;
void MSDelay(unsigned int) ;

void main (void)
{

while (1)
{

P0 = 0x55 ;
P1 = 0x55 ;
P2 = 0x55 ;
MSDelay (250) ;
P0 = 0xAA;
P1 = 0xAA;
P2 = 0xAA;
MSDelay (250) ;

}
}

void MSDelay(unsigned int i t ime)
{

unsigned int i , j ;
for (i = 0 ; i < i t ime ; i++)

for (j = 0 ; j < 1275 ; j++)
;

}

#include <reg51 . h>

MPMC Programs Milav Dabgar

MPMC Programs 41

s b i t MYBIT = 0x95 ;
void main (void)
{

unsigned int z ;
for (z = 0 ; z < 50000; z++)
{

MYBIT = 1 ;
MYBIT = 0 ;

}
}

#include <reg51 . h>
sb i t i n b i t = P1 ^ 0 ;
s b i t ou tb i t = P2 ^ 7 ;
b i t membit ; // use b i t to d e c l a r e b i t − addr e s sa b l e memory

void main (void)
{

while (1)
{

membit = i nb i t ; // ge t a b i t from P1.0
outb i t = membit ; // send i t to P2 .7

}
}

#include <reg51 . h>
void main (void)
{

P0 = 0x35 & 0x0F ; // ANDing
P1 = 0x04 | 0x68 ; // ORing
P2 = 0x54 ^ 0x78 ; // XORing
P0 = ~0x55 ; // i n v e r s i n g
P1 = 0x9A >> 3 ; // s h i f t i n g r i g h t 3
P2 = 0x77 >> 4 ; // s h i f t i n g r i g h t 4
P0 = 0x6 << 4 ; // s h i f t i n g l e f t 4

}

#include <reg51 . h>
void MSDelay(unsigned int) ;
void main (void)
{

P0 = 0x55 ;
P2 = 0x55 ;
while (1)
{

P0 = ~P0 ;
P2 = P2 ^ 0xFF ;
MSDelay (250) ;

}
}

void MSDelay(unsigned int i t ime)
{

unsigned int i , j ;

MPMC Programs Milav Dabgar

MPMC Programs 42

for (i = 0 ; i < i t ime ; i++)
for (j = 0 ; j < 1275 ; j++)

;
}

#include <reg51 . h>
sb i t i n b i t = P1 ^ 0 ;
s b i t ou tb i t = P2 ^ 7 ;
b i t membit ;

void main (void)
{

while (1)
{

membit = i nb i t ; // ge t a b i t from P1.0
outb i t = ~membit ; // i n v e r t i t and send i t to P2 .7

}
}

1.2.1.21 Write an 8051 C program to read the P1.0 and P1.1 bits and issue an ASCII
character to P0 according to the following table. P1.1 P1.0 0 0 send ‘0’ to P0 0 1 send ‘1’ to P0 1
0 send ‘2’ to P0 1 1 send ‘3’ to P0

#include <reg51 . h>
void main (void)
{

unsigned char z ;
z = P1 ;
z = z & 0x3 ;
switch (z)
{
case (0) :
{

P0 = ' 0 ' ;
break ;

}
case (1) :
{

P0 = ' 1 ' ;
break ;

}
case (2) :
{

P0 = ' 2 ' ;
break ;

}
case (3) :
{

P0 = ' 3 ' ;
break ;

}
}

}

#include <reg51 . h>
void main (void)

MPMC Programs Milav Dabgar

MPMC Programs 43

{
unsigned char x , y , z ;
unsigned char mybyte = 0x29 ;
x = mybyte & 0x0F ;
P1 = x | 0x30 ;
y = mybyte & 0xF0 ;
y = y >> 4 ;
P2 = y | 0x30 ;

}

#include <reg51 . h>
void main (void)
{

unsigned char bcdbyte ;
unsigned char w = ' 4 ' ;
unsigned char z = ' 7 ' ;
w = w & 0x0F ;
w = w << 4 ;
z = z & 0x0F ;
bcdbyte = w | z ;
P1 = bcdbyte ;

}

#include <reg51 . h>
void main (void)
{

unsigned char mydata [] = {0x25 , 0x62 , 0x3F , 0x52 } ;
unsigned char sum = 0 ;
unsigned char x ;
unsigned char chksumbyte ;
for (x = 0 ; x < 4 ; x++)
{

P2 = mydata [x] ;
sum = sum + mydata [x] ;
P1 = sum ;

}
chksumbyte = ~sum + 1 ;
P1 = chksumbyte ;

}

#include <reg51 . h>
void main (void)
{

unsigned char mydata [] = {0x25 , 0x62 , 0x3F , 0x52 , 0xE8 } ;
unsigned char chksum = 0 ;
unsigned char x ;
for (x = 0 ; x < 5 ; x++)

chksum = chksum + mydata [x] ;
i f (chksum == 0)

P0 = 'G' ;
else

P0 = 'B ' ;
}

MPMC Programs Milav Dabgar

MPMC Programs 44

#include <reg51 . h>
void main (void)
{

unsigned char x , binbyte , d1 , d2 , d3 ;
b inbyte = 0xFD;
x = binbyte / 10 ;
d1 = binbyte % 10 ;
d2 = x % 10 ;
d3 = x / 10 ;
P0 = d1 ;
P1 = d2 ;
P2 = d3 ;

}

#include <reg51 . h>
void main (void)
{

unsigned char mynum [] = "ABCDEF" ; // RAM space
unsigned char z ;
for (z = 0 ; z <= 6 ; z++)

P1 = mynum[z] ;
}

#include <reg51 . h>
void main (void)
{

unsigned char mydata [1 0 0] ; // RAM space
unsigned char x , z = 0 ;
for (x = 0 ; x < 100 ; x++)
{

z−−;
mydata [x] = z ;
P1 = z ;

}
}

#include <reg51 . h>
void main (void)
{

code unsigned char mynum [] = "ABCDEF" ;
unsigned char z ;
for (z = 0 ; z <= 6 ; z++)

P1 = mynum[z] ;
}

#include <reg51 . h>
void main (void)
{

unsigned char mydata [1 0 0] ; // RAM space
unsigned char x , z = 0 ;
for (x = 0 ; x < 100 ; x++)
{

MPMC Programs Milav Dabgar

MPMC Programs 45

z−−;
mydata [x] = z ;
P1 = z ;

}
}

#include <reg51 . h>
void main (void)
{

code unsigned char mynum [] = "ABCDEF" ;
unsigned char z ;
for (z = 0 ; z <= 6 ; z++)

P1 = mynum[z] ;
}

#include <reg51 . h>
sb i t P1b0 = P1 ^ 0 ;
s b i t regALSB = ACC ^ 0 ;
void main (void)
{

unsigned char conbyte = 0x44 ;
unsigned char x ;
ACC = conbyte ;
for (x = 0 ; x < 8 ; x++)
{

P1b0 = regALSB ;
ACC = ACC >> 1 ;

}
}

#include <reg51 . h>
sb i t P1b0 = P1 ^ 0 ;
s b i t regAMSB = ACC ^ 7 ;
void main (void)
{

unsigned char conbyte = 0x44 ;
unsigned char x ;
ACC = conbyte ;
for (x = 0 ; x < 8 ; x++)
{

P1b0 = regAMSB ;
ACC = ACC << 1 ;

}
}

#include <reg51 . h>
sb i t P1b0 = P1 ^ 0 ;
s b i t ACCMSB = ACC ^ 7 ;
b i t membit ;
void main (void)
{

unsigned char x ;

MPMC Programs Milav Dabgar

MPMC Programs 46

for (x = 0 ; x < 8 ; x++)
{

membit = P1b0 ;
ACC = ACC >> 1 ;
ACCMSB = membit ;

}
P2 = ACC;

}

#include <reg51 . h>
sb i t P1b0 = P1 ^ 0 ;
s b i t regALSB = ACC ^ 0 ;
b i t membit ;

void main (void)
{

unsigned char x ;
for (x = 0 ; x < 8 ; x++)
{

membit = P1b0 ;
ACC = ACC << 1 ;
regALSB = membit ;

}
P2 = ACC;

}

#include <reg51 . h>
void T0Delay (void) ;
void main (void)
{

while (1)
{

P1 = 0x55 ;
T0Delay () ;
P1 = 0xAA;
T0Delay () ;

}
}

void T0Delay ()
{

TMOD = 0x01 ;
TL0 = 0x00 ;
TH0 = 0x35 ;
TR0 = 1 ;
while (TF0 == 0)

;
TR0 = 0 ;
TF0 = 0 ;

}

#include <reg51 . h>
void T0M1Delay(void) ;
s b i t mybit = P1 ^ 5 ;

MPMC Programs Milav Dabgar

MPMC Programs 47

void main (void)
{

while (1)
{

mybit = ~mybit ;
T0M1Delay () ;

}
}

void T0M1Delay(void)
{

TMOD = 0x01 ;
TL0 = 0xFD;
TH0 = 0x4B ;
TR0 = 1 ;
while (TF0 == 0)

;
TR0 = 0 ;
TF0 = 0 ;

}

#include <reg51 . h>
void T1M1Delay(void) ;
void main (void)
{

unsigned char x ;
P2 = 0x55 ;
while (1)
{

P2 = ~P2 ;
for (x = 0 ; x < 20 ; x++)

T1M1Delay () ;
}

}

void T1M1Delay(void)
{

TMOD = 0x10 ;
TL1 = 0xFE ;
TH1 = 0xA5 ;
TR1 = 1 ;
while (TF1 == 0)

;
TR1 = 0 ;
TF1 = 0 ;

}

#include <reg51 . h>
sb i t mybit = P1 ^ 5 ;
s b i t SW = P1 ^ 7 ;
void T0M1Delay(unsigned char) ;

void main (void)
{

SW = 1 ;
while (1)

MPMC Programs Milav Dabgar

MPMC Programs 48

{
mybit = ~mybit ;
i f (SW == 0)

T0M1Delay (0) ;
else

T0M1Delay (1) ;
}

}

void T0M1Delay(unsigned char c)
{

TMOD = 0x01 ;
i f (c == 0)
{

TL0 = 0x67 ;
TH0 = 0xFC;

}
else
{

TL0 = 0x9A ;
TH0 = 0xFD;

}
TR0 = 1 ;
while (TF0 == 0)

;
TR0 = 0 ;
TF0 = 0 ;

}

#include <reg51 . h>
void T0M2Delay(void) ;
s b i t mybit = P1 ^ 5 ;

void main (void)
{

unsigned char x , y ;
while (1)
{

mybit = ~mybit ;
for (x = 0 ; x < 250 ; x++)

for (y = 0 ; y < 36 ; y++) // we put 36 , not 40
T0M2Delay () ;

}
}

void T0M2Delay(void)
{

TMOD = 0x02 ;
TH0 = −23;
TR0 = 1 ;
while (TF0 == 0)

;
TR0 = 0 ;
TF0 = 0 ;

}

#include <reg51 . h>

MPMC Programs Milav Dabgar

MPMC Programs 49

void T1M2Delay(void) ;
s b i t mybit = P2 ^ 7 ;

void main (void)
{

unsigned char x ;
while (1)
{

mybit = ~mybit ;
T1M2Delay () ;

}
}
void T1M2Delay(void)
{

TMOD = 0x20 ;
TH1 = −184;
TR1 = 1 ;
while (TF1 == 0)

;
TR1 = 0 ;
TF1 = 0 ;

}

#include <reg51 . h>
void main (void)
{

T1 = 1 ;
TMOD = 0x60 ;
TH1 = 0 ;
while (1)
{

do
{

TR1 = 1 ;
P1 = TL1 ;

} while (TF1 == 0) ;
TR1 = 0 ;
TF1 = 0 ;

}
}

#include <reg51 . h>
void main (void)
{

T0 = 1 ;
TMOD = 0x05 ;
TL0 = 0 ;
TH0 = 0 ;
while (1)
{

do
{

TR0 = 1 ;
P1 = TL0 ;
P2 = TH0;

} while (TF0 == 0) ;
TR0 = 0 ;

MPMC Programs Milav Dabgar

MPMC Programs 50

TF0 = 0 ;
}

}

#include <reg51 . h>
void main (void)
{

TMOD = 0x20 ; // use Timer 1 , mode 2
TH1 = 0xFA; // 4800 baud ra t e
SCON = 0x50 ;
TR1 = 1 ;
while (1)
{

SBUF = 'A ' ; // p lace va lue in b u f f e r
while (TI == 0)

;
TI = 0 ;

}
}

#include <reg51 . h>
void SerTx (unsigned char) ;
void main (void)
{

TMOD = 0x20 ; // use Timer 1 , mode 2
TH1 = 0xFD; // 9600 baud ra t e
SCON = 0x50 ;
TR1 = 1 ; // s t a r t t imer
while (1)
{

SerTx ('Y ') ;
SerTx ('E ') ;
SerTx ('S ') ;

}
}

void SerTx (unsigned char x)
{

SBUF = x ; // p lace va lue in b u f f e r
while (TI == 0)

; // wai t u n t i l t r ansmi t t ed
TI = 0 ;

}

#include <reg51 . h>
void main (void)
{

unsigned char mybyte ;
TMOD = 0x20 ; // use Timer 1 , mode 2
TH1 = 0xFA; // 4800 baud ra t e
SCON = 0x50 ;
TR1 = 1 ; // s t a r t t imer
while (1)
{ // repea t f o r e v e r

MPMC Programs Milav Dabgar

MPMC Programs 51

while (RI == 0)
; // wai t to r e c e i v e

mybyte = SBUF; // save va lue
P1 = mybyte ; // Write va lue to por t
RI = 0 ;

}
}

#include <reg51 . h>
sb i t MYSW = P2 ^ 0 ; // input sw i t ch
void main (void)
{

unsigned char z ;
unsigned char Mess1 [] = "Normal␣Speed " ;
unsigned char Mess2 [] = "High␣Speed " ;
TMOD = 0x20 ; // use Timer 1 , mode 2
TH1 = 0xFF ; // 28800 f o r normal
SCON = 0x50 ;
TR1 = 1 ; // s t a r t t imer
i f (MYSW == 0)
{

for (z = 0 ; z < 12 ; z++)
{

SBUF = Mess1 [z] ; // p lace va lue in b u f f e r
while (TI == 0)

; // wai t f o r t ransmi t
TI = 0 ;

}
}
else
{

PCON = PCON | 0x80 ; // f o r h igh speed o f 56K
for (z = 0 ; z < 10 ; z++)
{

SBUF = Mess2 [z] ; // p lace va lue in b u f f e r
while (TI == 0)

; // wai t f o r t ransmi t
TI = 0 ;

}
}

}

#include <reg51 . h>
s f r SBUF1 = 0xC1 ;
s f r SCON1 = 0xC0 ;
s b i t TI1 = 0xC1 ;

void main (void)
{

TMOD = 0x20 ; // use Timer 1 , mode 2
TH1 = 0xFA; // 4800 baud ra t e
SCON = 0x50 ; // use 2nd s e r i a l por t SCON1
TR1 = 1 ; // s t a r t t imer
while (1)
{

SBUF1 = 'A ' ; // use 2nd s e r i a l por t SBUF1
while (TI1 == 0)

MPMC Programs Milav Dabgar

MPMC Programs 52

; // wai t f o r t ransmi t
TI1 = 0 ;

}
}

#include <reg51 . h>
s f r SBUF1 = 0xC1 ;
s f r SCON1 = 0xC0 ;
s b i t RI1 = 0xC0 ;
void main (void)
{

unsigned char mybyte ;
TMOD = 0x20 ; // use Timer 1 , mode 2
TH1 = 0xFD; // 9600 baud ra t e
SCON1 = 0x50 ; // use 2nd s e r i a l por t SCON1
TR1 = 1 ; // s t a r t t imer
while (1)
{

while (RI1 == 0)
; // monitor RI1

mybyte = SBUF1 ; // use SBUF1
P2 = mybyte ; // p lace va lue on por t
RI1 = 0 ;

}
}

// We w i l l use t imer 0 mode 2 (auto−re load) . One h a l f o f the per iod i s 100
↪→ us . 100/1.085 us = 92 , and TH0 = 256 − 92 = 164 or A4H

#include <reg51 . h>
sb i t SW = P1 ^ 7 ;
s b i t IND = P1 ^ 0 ;
s b i t WAVE = P2 ^ 5 ;

void t imer0 (void) i n t e r r up t 1
{

WAVE = ~WAVE; // t o g g l e pin
}

void main ()
{

SW = 1 ; // make sw i t ch input
TMOD = 0x02 ;
TH0 = 0xA4 ; // TH0=−92
IE = 0x82 ; // enab l e i n t e r r u p t f o r t imer 0
while (1)
{

IND = SW; // send sw i t ch to LED
}

}

#include <reg51 . h>
sb i t WAVE = P0 ^ 1 ;

void t imer0 () i n t e r r up t 1

MPMC Programs Milav Dabgar

MPMC Programs 53

{
WAVE = ~WAVE; // t o g g l e pin

}

void s e r i a l 0 () i n t e r r up t 4
{

i f (TI == 1)
{

TI = 0 ; // c l e a r i n t e r r u p t
}
else
{

P0 = SBUF; // put va lue on pins
RI = 0 ; // c l e a r i n t e r r u p t

}
}

void main ()
{

unsigned char x ;
P1 = 0xFF ; // make P1 an input
TMOD = 0x22 ;
TH1 = 0xF6 ; // 4800 baud ra t e
SCON = 0x50 ;
TH0 = 0xA4 ; // 5 kHz has T=200us
IE = 0x92 ; // enab l e i n t e r r u p t s
TR1 = 1 ; // s t a r t t imer 1
TR0 = 1 ; // s t a r t t imer 0
while (1)
{

x = P1 ; // read va lue from pins
SBUF = x ; // put va lue in b u f f e r
P2 = x ; // Write va lue to p ins

}
}

#include <reg51 . h>
sb i t WAVE = P2 ^ 1 ;
unsigned char cnt ;
void t imer0 () i n t e r r up t 1
{

WAVE = ~WAVE; // t o g g l e pin
}
void t imer1 () i n t e r r up t 3
{

cnt++; // increment counter
P0 = cnt ; // d i s p l a y va lue on pins

}

void main ()
{

cnt = 0 ; // s e t counter to 0
TMOD = 0x42 ;
TH0 = 0x46 ; // 10 KHz
IE = 0x86 ; // enab l e i n t e r r u p t s
TR0 = 1 ; // s t a r t t imer 0
while (1)

; // wai t u n t i l i n t e r r u p t e d
}

MPMC Programs Milav Dabgar

MPMC Programs 54

#include <reg51 . h>
s f r lda ta = 0x90 ; // P1=LCD data p ins
s b i t r s = P2 ^ 0 ;
s b i t rw = P2 ^ 1 ;
s b i t en = P2 ^ 2 ;
s b i t busy = P1 ^ 7 ;

void MSDelay(unsigned int i t ime)
{

unsigned int i , j ;
for (i = 0 ; i < i t ime ; i++)

for (j = 0 ; j < 1275 ; j++)
;

}

void l cdready ()
{

busy = 1 ; // make the busy pin at input
r s = 0 ;
rw = 1 ;
while (busy == 1)
{ // wai t here f o r busy f l a g

en = 0 ; // s t r o b e the enab l e pin
MSDelay (1) ;
en = 1 ;

}
}

void lcdcmd (unsigned char value)
{

l cdready () ; // check the LCD busy f l a g
l da ta = value ; // put the va lue on the p ins
r s = 0 ;
rw = 0 ;
en = 1 ; // s t r o b e the enab l e pin
MSDelay (1) ;
en = 0 ;
return ;

}

void l cddata (unsigned char value)
{

l cdready () ; // check the LCD busy f l a g
l da ta = value ; // put the va lue on the p ins
r s = 1 ;
rw = 0 ;
en = 1 ; // s t r o b e the enab l e pin
MSDelay (1) ;
en = 0 ;
return ;

}

void main ()
{

lcdcmd (0 x38) ;
lcdcmd (0x0E) ;
lcdcmd (0 x01) ;
lcdcmd (0 x06) ;
lcdcmd (0 x86) ; // l i n e 1 , p o s i t i o n 6

MPMC Programs Milav Dabgar

MPMC Programs 55

l cddata ('M') ;
l cddata ('D ') ;
l cddata ('E ') ;

}

MPMC Programs Milav Dabgar

	MPMC Programs
	Assembly Language Programs
	MPMC GTU Paper Programs Solutions
	Mazidi Book Assembly Language Programs

	Embedded C Programs
	Mazidi Book C Programs

