MPMC Programs by Milav Dabgar

Assembly Language Programs

MPMC GTU Paper Programs Solutions

Multiply Two Bytes

Write a program using MUL instruction to multiply two bytes 05h and 03h. (3)

ORG 0000H ; Set the starting address of the program to 0000H

MOV A, #05H ; Load the first byte (multiplicand) into the accumulator
MOV B, #03H ; Load the second byte (multiplier) into register B

MUL AB ; Multiply the contents of A and B (result stored in A and B)

; At this point, the lower byte of the result is in the accumulator (A)

; and the higher byte of the result is in register B.

; Example: To store the result in memory

MOV 40H, A ; Store the lower byte in memory location 40H
MOV 41H, B ; Store the higher byte in memory location 41H
END ; End of program

Explanation:

1. ORG 0000H: This directive tells the assembler that the code should be placed starting from memory
address 0000H.

2. MOV A, #05H: This instruction loads the immediate value 05H (the first number) into the accumulator
register (A).

3. MOV B, #03H: This instruction loads the immediate value 03H (the second number) into register B.

4. MUL AB: This is the core multiplication instruction. It multiplies the contents of the accumulator (A)
with the contents of register B. The 16-bit result is stored across the accumulator (lower byte) and
register B (higher byte).

5. MOV 40H, A / MOV 41H, B: These instructions are an example of how you would store the result in
memory. Here, the lower byte of the result is stored at address 40H and the higher byte at 41H.

Important Notes:

e The 8051 can only multiply 8-bit numbers. The result of 05H * 03H = OFH (15), fits within a single byte
so there's no overflow in this case.

e If the result was larger than 255 (FFh), the overflow flag (OV) in the program status word (PSW) would
be set.

RAM Multiplication

No.1/74

MPMC Programs by Milav Dabgar

Write an ALP to multiply two numbers stored at 30h and 31h in RAM. Store answer at HSB 51H and LSB
52H. (4)

ORG 0000H ; Start the program at memory address 0000H

MOV A, 30H ; Load the first number from RAM location 30H into A

MOV B, @A ; Move the value pointed to by A (the first number) into B
INC A ; Increment A to point to the second number (31H)

MOV A, @A ; Move the value pointed to by A (the second number) into A
MUL AB ; Multiply the two numbers

MOV 52H, A ; Store the LSB of the result at memory location 52H
MOV 51H, B ; Store the MSB of the result at memory location 51H

END End of program

~e

Explanation:

1. ORG 0000H: Indicates the starting memory address for the program.

2. MOV A, 30H: Loads the memory address 30H into the accumulator (A).

w

MOV B, @A: Indirect addressing. Moves the contents of the memory location pointed to by A (which
contains the first number) into register B.

INC A: Increments A to point to location 31H, where the second number is stored.
MOV A, @A: Loads the second number (from location 31H) into the accumulator.
MUL AB: Multiplies the number in the accumulator (A) with the number in register B.

MOV 52H, A: Stores the lower byte (LSB) of the result in memory location 52H.

© N o v A

MOV 51H, B: Stores the higher byte (MSB) of the result in memory location 51H.

Divide Two Bytes

Write a program using DIV instruction to divide two bytes 09h and 02h. (3)

ORG 0000H ; Start the program at memory address 0000H

MOV A, #09H ; Load the dividend (09h) into the accumulator
MOV B, #02H ; Load the divisor (02h) into register B

DIV AB ; Divide the accumulator (A) by register B

; Quotient will be in A, remainder in B

; Example: To store the results in memory

MOV 60H, A ; Store the quotient in memory location 60H
MOV 61H, B ; Store the remainder in memory location 61H
END ; End of program

No.2 /74

Explanation:

MPMC Programs by Milav Dabgar

1. ORG 0000H: Sets the starting address of the program.

. MOV A, #09H: Loads the dividend (the number to be divided) into the accumulator.

2
3. MOV B, #02H: Loads the divisor into register B.
4

. DIV AB: Performs the division. The result (quotient) is stored in the accumulator (A), and the remainder

is stored in register B.

5. MOV 60H, A/ MOV 61H, B: These are example instructions to store the quotient and remainder in
memory locations 60H and 61H, respectively.

Important Notes:

¢ Integer Division: The 8051 DIV instruction performs integer division, meaning any fractional part of

the result will be discarded.

e Overflow: If the result of the division is too large to fit in the accumulator, the overflow flag (OV) will

be set in the program status word (PSW). You'll need to add code to handle this potential overflow
situation if it's relevant to your application.

Result:

In this case, 09h / 02h = 4 (quotient) with a remainder of 1.

Number Division

Write a program to divide two numbers stored at 20h and 21h. Store quotient on 40h and reminder at 41h.

(4)

ORG
MOV
MOV
INC
MOV
DIV
MOV

MOV

END

0000H ; Set
A, 20H B
B, @A o
A 7
A, @A g
AB 8
40H, A 7
41H, B B

Explanation:

the program's starting address

Load the address of the dividend into A
Move the dividend from RAM to register B
Increment A to point to the divisor

Move the divisor from RAM to the accumulator (A)

Divide the accumulator (A) by register B

Quotient in A, remainder in B

Store the quotient at memory location 40H

Store the remainder at memory location 41H

End of program

1. ORG 0000H: Indicates the program starts at memory address 0000H.

2. MOV A, 20H: Loads the memory address 20H (where the dividend is stored) into the accumulator.

3. MOV B, @A: Indirect addressing. Loads the value at the memory location pointed to by A (the

dividend) into register B.

No. 3 /74

MPMC Programs by Milav Dabgar

4. INC A: Increments the accumulator to point to address 21H, where the divisor is stored.
5. MOV A, @A: Loads the value at the memory location pointed to by A (the divisor) into the accumulator.

6. DIV AB: Performs the division. The quotient is left in the accumulator (A) and the remainder in register
B.

7. MOV 40H, A: Stores the quotient (from A) into memory location 40H.

8. MOV 41H, B: Stores the remainder (from B) into memory location 41H.

Square Wave Generation P1.3 50% DC

Write a program to create square wave of 50 % duty cycle on P1.3 pin using timer. (4)

Code (Assuming Timer 0, Mode 1):

ORG 0000H
MOV TMOD, #01lH ; Set Timer 0 in Mode 1 (16-bit timer)

; Calculate Timer Reload Value (adjust for your crystal frequency)
; Example: Assuming 12 MHz crystal frequency

; Desired period = Time for HIGH + Time for LOW = 2 * Time for HIGH
; Let's make Time for HIGH = 1 ms (adjust as needed)

; Timer count = (Crystal Frequency / 12) * Time

B = (12000000 /12) * 0.001 = 1000

; Reload Value = 65536 - Timer Count = 65536 - 1000 = 64536

; Split into higher and lower bytes:

MOV THO, #O0xFC ; Higher byte of reload value

MOV TLO, #0x18 ; Lower byte of reload value

SETB P1.3 ; Initially set the pin HIGH

SETB TRO ; Start Timer 0

HERE:

JNB TFO, HERE ; Wait for Timer 0 overflow
CLR TFO ; Clear the overflow flag
CPL P1.3 ; Toggle the pin

SJMP HERE ; Repeat indefinitely

Explanation:

1. ORG 0000H: Sets the program starting address.
2. MOV TMOD, #01H: Configures Timer 0 to operate in Mode 1 (16-bit mode).
3. Timer Reload Value Calculation:

o You'll need to adjust the calculation based on your crystal frequency and desired square wave
period. The example assumes a 12 MHz crystal and aims for a 1 ms HIGH time (and 1 ms LOW
time).

4. MOV THO, #0xFC / MOV TLO, #0x18: Load the calculated reload value into Timer 0's high and low
registers.

No. 4 /74

S v ® N o u

MPMC Programs by Milav Dabgar

SETB P1.3: Initially set the output pin P1.3 to HIGH.

SETB TRO: Start running Timer 0.

HERE / JNB TFO, HERE: Create a loop waiting for the Timer 0 overflow flag (TFO) to be set.
CLR TFO: Clear the Timer 0 overflow flag.

CPL P1.3: Complement (toggle) the logic level of the P1.3 pin.

SJMP HERE: Jump back to the beginning of the loop, creating an infinite square wave generation.

Important Considerations:

Crystal Frequency: Make sure to adjust the reload value calculation based on your specific crystal
frequency.

Timer Mode: Mode 1 is a common choice for square wave generation.
Output Pin: Ensure that P1.3 is configured as an output pin.

Desired Period/Frequency: Adjust the calculation to achieve your specific square wave timing
requirements.

Square Wave Generation P1.1

Write an ALP to generate square wave on P1.1 using timer0O and mode 1. (4)

ORG 0000H ; Set program origin

MOV TMOD, #01lH ; Configure Timer 0 in Mode 1 (1l6-bit mode)

.
r

.
I

Calculate Timer Reload Value (adjust for your desired frequency)
Example: Assuming 11.0592 MHz crystal frequency for a 1 kHz square wave
1 kHz square wave has a period of 1 ms (0.001 seconds)

Time for HIGH = Time for LOW = 0.5 ms (0.0005 seconds)

Timer count = (Crystal Frequency / 12) * Time
= (11059200 / 12) * 0.0005
= 460.8

Reload Value = 65536 - Timer Count = 65536 - 460 = 65076
Split into higher and lower bytes:

MOV THO, #O0xFC ; Higher byte of reload value (65076)
MOV TLO, #0x18 ; Lower byte of reload value (65076)

SETB P1l.1 ; Initially set P1l.1 HIGH

SETB TRO ; Start Timer 0

HERE:

JNB TFO, HERE ; Wait for Timer 0 to overflow

CLR TFO ; Clear the overflow flag

CPL P1l.1 ; Toggle the P1.1 pin

SJMP HERE ; Loop back to create the square wave
Explanation:

1.

ORG 0000H: Sets the starting address of your program.

No.5 /74

MPMC Programs by Milav Dabgar

2. MOV TMOD, #01H: Configures Timer 0 to operate in Mode 1, which is a 16-bit timer mode.
3. Timer Reload Calculation:

o You need to adjust this calculation based on your crystal frequency and the desired
frequency of the square wave.

o The example aims for a 1 kHz square wave with a 11.0592 MHz crystal.
MOV THO, #0xFC / MOV TLO, #0x18: Loads the calculated reload value into Timer Q's registers.
SETB P1.1: Sets the P1.1 pin HIGH initially.
SETB TRO: Starts Timer O.
HERE / JNB TFO0, HERE: Creates a loop that waits for the Timer 0 overflow flag (TFO).
CLR TFO: Clears the overflow flag.

CPL P1.1: Toggles the state of the P1.1 pin, changing it from HIGH to LOW or vice versa.

© v o N o v &

10. SJMP HERE: Jumps back to the label "HERE," creating a continuous square wave.
Key Points:

e Crystal Frequency: Replace the crystal frequency in the calculation with the actual value for your 8051
system.

e Desired Frequency: Modify the calculation to get the square wave frequency you need.

e Pin Configuration: Ensure that P1.1 is configured as an output pin.

Software Delay

Write software delay loop using two registers and explain in brief. (4)

ORG 0000H

DELAY:

MOV RO, #50D ; Load a value into register RO (adjust for delay)
MOV R1l, #250D ; Load a value into register R1 (adjust for delay)
DJNZ R1: ; Decrement R1 and jump if not zero

DJNZ R1l, DJNZ R1

DJNZ_RO: ; Decrement RO and jump if not zero
DJNZ RO, DJNZ_RO

RET ; Return from the subroutine

Explanation:

1. DELAY: This label marks the beginning of your delay subroutine.

2. MOV RO, #50D / MOV R1, #250D: These instructions load initial values into two registers, RO and R1.
The larger the values, the longer the delay. You'll need to adjust these based on your crystal frequency
and the desired delay length.

No.6 /74

MPMC Programs by Milav Dabgar

3. DJNZ_R1/ DJNZ_RO: These are "Decrement and Jump if Not Zero" instructions. They form two nested
loops:

o Outer Loop (R0): The outer loop decrements RO and repeats until RO reaches zero.

o Inner Loop (R1): The inner loop decrements R1 and repeats until R1 reaches zero. Each time the
inner loop runs, it reloads R1 with its initial value.

How it Works:

The nested loops create a series of decrement operations. The combination of instructions and the initial
values in RO and R1 determine the overall time the delay takes to execute.

Important Considerations:

e Accuracy: Software delays are not perfectly precise. Their timing depends on your crystal frequency
and the number of instructions within the loop.

e Crystal Frequency: For more accurate delays, you'll need to calibrate the initial values (in RO and R1)
based on your crystal frequency.

* Timer Alternatives: For very precise delays, consider using the 8051's built-in timers instead of
software delay loops.

Bit Masking

Write sequence of instructions for masking 4 lower bits of content of R2. (3)

MOV A, R2 ; Copy the contents of R2 into the accumulator
ANL A, #OFOH ; Perform a logical AND with OFOH to mask the lower 4 bits
MOV R2, A ; Move the result back into R2

Explanation:

1. MOV A, R2: This instruction copies the current value stored in register R2 into the accumulator (A).

2. ANL A, #0FOH: This performs a logical AND operation between the value in the accumulator (which
now contains the original value of R2) and the hexadecimal value OFOH. The result will be that:

o Bits 4-7 of the accumulator will remain unchanged.
o Bits 0-3 of the accumulator will become 0 (masked).

3. MOV R2, A: This instruction moves the modified contents of the accumulator (with the lower bits
masked) back into register R2.

Key Points

* Hexadecimal Mask: The value OFOH (binary: 1111 0000) is used as a mask because it has '1's in the bit
positions you want to preserve and '0's in the bit positions you want to clear.

e Masking: Masking is a technique used to isolate or clear specific bits within a byte.

Memory Fill

Write sequence of instructions to fill internal memory location 20H to 2FH by data FFH. (3)

No.7 /74

MPMC Programs by Milav Dabgar

MOV RO, #20H ; Load starting address into a register (RO in this case)

MOV A, #0FFH ; Load the data to be filled into the accumulator

FILL LOOP:

MOV @RO, A ; Store the content of the accumulator into the memory location pointed to
by RO

INC RO ; Increment RO to point to the next memory location

CJNE RO, #30H, FILL LOOP ; Compare RO with the ending address + 1 (30H), jump to

FILL LOOP if not equal

Explanation:

1. MOV RO, #20H: Load the starting memory address (20H) into a register (we're using RO).
2. MOV A, #0FFH: Load the value you want to fill (FFH) into the accumulator.

3. FILL_LOOP: This label marks the beginning of the loop.
4

. MOV @RO, A: This instruction uses indirect addressing. It stores the contents of the accumulator (FFH)
into the memory location pointed to by the register RO.

U

INC RO: Increment the register RO to point to the next memory location.

6. CJNE RO, #30H, FILL_LOOP: This instruction means "Compare and Jump if Not Equal." It compares the
contents of RO with the value 30H (which is the ending address + 1). If they are not equal, the program
jumps back to the FILL_roop label, continuing the filling process.

Key Points:

¢ Indirect Addressing: The @ro syntax means that the contents of RO are used as the memory address.

e Loop Termination: The CJNE instruction ensures the loop runs until memory location 2FH is filled.

External Memory Addition

Write an ALP to add two 8 bit numbers stored at External memory location 2030h and 2031h. Store result in
external memory location 2032h. (4)

ORG 0000H ; Set origin of the program

; Load data from external memory

MOV A, #30H ; Load lower byte of the first number's address into A
MOVC A, @A+DPTR ; Fetch the first number from external memory using DPTR
MOV B, A ; Store the first number in register B

MOV A, #31H ; Load lower byte of the second number's address into A
MOVC A, QA+DPTR ; Fetch the second number from external memory

ADD A, B ; Add the two numbers (result now in A)

MOV A, #32H ; Load lower byte of the result address into A

MOVX @DPTR, A ; Store the result in external memory using DPTR

END ; End of program

No. 8 /74

MPMC Programs by Milav Dabgar

Explanation:
1. ORG 0000H: Sets the starting memory address for the program.
2. MOV A, #30H / MOVC A, @A+DPTR:
o Loads the lower byte of the first number's address (2030H) into the accumulator (A).

o Uses the DPTR (Data Pointer) register to access external memory. The Movc instruction fetches
the byte at the address calculated by adding the contents of A to the value in DPTR.

3. MOV B, A: Stores the fetched first number in register B.

4. MOV A, #31H / MOVC A, @A+DPTR Repeats the process to fetch the second number from address
2031H.

5. ADD A, B: Adds the two numbers together, storing the result in the accumulator (A).
6. MOV A, #32H / MOVX @DPTR, A:
o Loads the lower byte of the result's address (2032H) into A.

o Uses Movx for external memory access, storing the result from A at the address pointed to by
DPTR.

Important Notes:

e DPTR Setup: Ensure that your DPTR register is correctly initialized to point to the start of external
memory before executing this code.

e MOVC vs. MOVX: movc is used to read from code memory (usually within the 8051), while movx is
used for external data memory.

LED Flashing

Draw circuit diagram for interfacing 8 LEDS on port 1. Write a program to flash LEDS in sequence (on 1 LED
at a time) with suitable time delay. (7)

Circuit Diagram
1. 8051 Microcontroller: The heart of the circuit. Choose your specific 8051 microcontroller model.

2. LEDs: 8 regular LEDs (choose a suitable color).

3. Current-Limiting Resistors: One resistor for each LED. Calculate the resistor value using this formula:
Resistor Value (Ohms) = (Supply Voltage - LED Forward Voltage) / Desired LED Current

o Typical forward voltage for LEDs is around 1.8V - 3.3V (check your LED datasheet)
o Common LED current is around 20mA (0.02A)

4. Connections:
o Connect one leg of each LED to a separate pin on Port 1 of the 8051 (P1.0 - P1.7).

o Connect the other leg of each LED to a current-limiting resistor, and then connect those resistors
to ground.

Example Circuit (Schematic would be ideal, but I'll provide a textual description):

No.9 /74

MPMC Programs by Milav Dabgar

e Assume 5V supply and standard red LEDs (2V forward voltage)
e P1.0---[330 Ohm Resistor]--- LED --- GND
e P1.1---[330 Ohm Resistor]--- LED --- GND

e .. (Repeat connections the same way for P1.2 to P1.7)
8051 Program

ORG 0000H

START:

MOV RO, #00H ; Initialize a counter
MOV A, #01H ; Initial LED pattern (0000 0001)

LOOP:

MOV P1, A ; Output the pattern to Port 1

CALL DELAY ; Call a delay subroutine

ROR A ; Rotate the pattern one bit to the right
INC RO ; Increment counter

CJIJNE RO, #08, LOOP ; Repeat until 8 LEDs have been lit

SJMP START ; Restart the sequence

; Simple Delay Subroutine

DELAY:

MOV R1, #200D ; Adjust these values for
MOV R2, #00D ; desired delay time

DJNZ R2, $

DJNZ R1, $

RET

Explanation

e START: Sets up a counter and initial LED pattern
e LOOP: Outputs pattern to the LEDs, calls delay, rotates the '1" bit for the next LED.
e CJNE: Checks if 8 shifts have occurred, restarts if not.

e DELAY: A basic software delay using nested loops.
Key Points

e Port Output: Ensure Port 1 is configured as output.
e Resistor Calculation: Calculate the correct resistor value for your LEDs and supply voltage.

¢ Delay Adjustment: Modify values in the DELAY subroutine for your desired LED flashing speed.

Register Separation

Write a program to separate data 71h stored in accumulator , in two registers R3=07h and R4=01h. (4)

We'll use a combination of bit-shifting and masking operations:

No. 10 /74

MPMC Programs by Milav Dabgar

MOV A, #71H ; Load 71h into the accumulator

; Extract lower 4 bits (R3)
MOV R3, A ; Store the value of A in R3
AND A, #0FH ; Mask off the upper 4 bits (keep only the lower nibble)

; Extract upper 4 bits (R4)

MOV R4, A ; The accumulator now holds only the upper nibble

SHR A ; Shift right by 4 positions (move upper nibble to lower)

Explanation:

1. MOV A, #71H: Load the value 71h into the accumulator (A).

2. Extract lower 4 bits:

o MOV R3, A: Store the original value from the accumulator into R3. Now both the accumulator and
R3 have the value 71h.

o AND A, #0FH: Perform a logical AND operation with OFh (00001111 in binary) to mask off the
upper 4 bits in the accumulator. Now, the accumulator only holds 00000111 (which is 7).

3. Extract upper 4 bits

o MOV R4, A: Store the masked value (the upper nibble, now in the lower 4 bits) into R4.

o SHR A: Shift the accumulator right by 4 positions. This moves the upper nibble (01) into the lower
4 bits, and the accumulator now holds 00000001 (which is 1).

At the end of this code:

e R3: Contains 00000111 (7)

e R4: Contains 00000001 (1)

Summation of first 9 numbers

Write a program to add first 9 numbers (1 to 9). Store answer at memory location 77h of RAM. (4)

ORG 0000H :
MOV RO, #00H ;
MOV R1, #09H g
LOOP:

ADD A, R1 ;
DJNZ R1, LOOP 8
MOV 77H, A 8
END ;

Explanation:

Set the program's starting address

Initialize a register (R0) as the accumulator

Initialize a counter (R1l) to keep track of numbers

Add the current number (from R1) to the accumulator
Decrement the counter and jump to LOOP if not zero

Store the result (sum) in memory location 77H

End of program

1. ORG 0000H: Sets the starting address of your code.

No. 11 /74

o v oM W N

8.

MPMC Programs by Milav Dabgar

MOV RO, #00H: Initializes register RO to 0. RO will store the running sum.

MOV R1, #09H: Initializes register R1 to 9, which will be our counter.

LOOP: This label marks the beginning of the loop.

ADD A, R1: Adds the value in R1 to the accumulator (where the running sum is stored).

DJNZ R1, LOOP: Decrements R1 and jumps back to the roop label if R1 is not zero. This loop
continues for 9 iterations.

MOV 77H, A: After the loop, the accumulator (A) holds the sum of the first 9 numbers. This instruction
stores that sum in memory location 77H.

END: Indicates the end of the program.

Key Points

Registers: We use registers for calculations and as a loop counter.

DJNZ Instruction: The 'Decrement and Jump if Not Zero' instruction creates the loop.

Register Exchange

Write assembly code to exchange data of R1 and R2 using PUSH & POP. (3)

PUSH R1 ; Push the contents of Rl onto the stack

PUSH R2 ; Push the contents of R2 onto the stack
POP R1 ; Pop the top value from the stack (originally from R2) into R1
POP R2 ; Pop the next value from the stack (originally from R1) into R2

Explanation:

1.
2.

4.

PUSH R1: Pushes the contents of register R1 onto the system stack.
PUSH R2: Pushes the contents of register R2 onto the stack (on top of R1's value).

POP R1: Pops the top value from the stack and stores it into R1. Since we pushed R2 last, this will be
R2's original value.

POP R2: Pops the next value from the stack and stores it into R2. This will be R1's original value.

Result:

After executing this code, the values in R1 and R2 will have been effectively swapped.

Important Note:

The stack in the 8051 microcontroller operates in a LIFO (Last In, First Out) manner. This means the last
value pushed onto the stack will be the first value popped off.

RAM Copy

Write assembly code for copying data 99H to RAM memory locations 30H to 50H using counter. (3)

No.12 /74

MPMC Programs by Milav Dabgar

ORG 0000H ; Set the program's starting address

MOV RO, #30H ; Load the starting memory address into RO

MOV R1, #21 ; Initialize counter (21 locations from 30H to 50H inclusive)

MOV A, #99H ; Load the data to be copied into the accumulator

COPY_LOOP:

MOV @RO, A ; Store the data from the accumulator into the memory location pointed to
by RO

INC RO ; Increment RO to point to the next memory location

DJNZ R1l, COPY_LOOP ; Decrement the counter and jump back to COPY LOOP if not zero

END ; End of program

Explanation:

1.
2.
3.

ORG 0000H: Sets the program's starting memory address in the code space.
MOV RO, #30H: Loads the starting RAM address (30H) into register RO.

MOV R1, #21: Loads the counter value into register R1. Since there are 21 memory locations from 30H
to 50H (inclusive), we initialize our counter with 21.

MOV A, #99H: Loads the data (99H) to be copied into the accumulator.
COPY_LOOP: This label marks the beginning of the loop.

MOV @RO, A: Uses indirect addressing to store the contents of the accumulator (99H) into the memory
location currently pointed to by RO.

INC RO: Increments RO to point to the next memory location where the data will be copied.

DJNZ R1, COPY_LOOP: Decrements the counter in R1 and jumps back to the copy roop label if the
counter is not zero. The loop continues until the counter reaches zero.

Switch-LED Connection

Draw a diagram to connect 8 switches with port P1 and 8 LEDs with port P2 and write a program to show
status of switch on LED. (If switch is ON then LED is ON and if switch is OFF, LED is OFF). (7)

Circuit Diagram

Components:

8051 Microcontroller

8 Switches (simple push-button or toggle switches)

8 LEDs

8 Current-limiting resistors (calculate the value based on your specific LEDs)

Breadboard and connecting wires

Connections:

1.

Port P1 (Input):

No. 13 /74

MPMC Programs by Milav Dabgar

o Connect one end of each switch to a separate pin on Port P1 (P1.0 - P1.7).
o Connect the other end of each switch to the microcontroller's ground (GND).
2. Port P2 (Output):
o Connect the anode (longer leg) of each LED to a separate pin on Port P2 (P2.0 - P2.7).

o Connect the cathode (shorter leg) of each LED to a current-limiting resistor. Connect the other
end of each resistor to ground (GND).

Important:

e Pull-up Resistors: You'll likely need pull-up resistors (around 10k Ohms) connected between each
input pin on Port P1 and the supply voltage (VCC). This ensures a defined logic level when the switches
are open.

8051 Program

ORG 0000H

LOOP:

MOV A, P1 ; Read the input from Port P1

MOV P2, A ; Transfer the input directly to Port P2

SJMP LOOP ; Jump back to continuously monitor the switches
END ; End of program

Explanation
e ORG 0000H: Sets the program's starting address.

e LOOP: Label for the main program loop.

e MOV A, P1: Reads the entire byte from Port P1 (the status of all 8 switches) and stores it in the
accumulator (A).

e MOV P2, A: Directly transfers the value from the accumulator to Port P2, controlling the LEDs to mirror
the switch states.

e SJMP LOOP: Short jump back to the beginning of the loop for continuous monitoring.
Key Points

e Switch Logic: Make sure your switch connections result in a logic HIGH when pressed and a logic LOW
when released.

e LED Considerations: Ensure Port P2 can handle the current requirements of your LEDs.

External RAM

Write a program to find largest number from 10 numbers starting at external RAM location 2000h. Store
the largest number in internal RAM location 20h. (4)

ORG 0000H ; Set the program's starting address

No. 14 [/ 74

MPMC Programs by Milav Dabgar

MOV DPTR, #2000H ; Initialize DPTR to point to the start of external RAM

MOV RO, #10 ; Initialize a counter to track 10 numbers

MOV A, @DPTR ; Load the first number into the accumulator

MOV 20H, A ; Initialize internal RAM location 20H with the first number (assume

it's the largest initially)

LOOP:
INC DPTR ; Move to the next number in external RAM
MOVC A, Q@A+DPTR ; Fetch the current number

CJIJNE A, 20H, NEXT ; Compare the current number with the largest so far

MOV 20H, A ; If the current number is larger, update the largest
NEXT:
DJNZ RO, LOOP ; Decrement the counter and loop if not zero
END ; End of program
Explanation:

1.
2.

© N oo u

10.
11.

ORG 0000H: Sets the starting address of the program.

MOV DPTR, #2000H: Initializes the data pointer (DPTR) to point to the start of the numbers in external
RAM (2000h).

MOV RO, #10: Initializes a counter (RO) to keep track of the 10 numbers.

MOV A, @DPTR / MOV 20H, A: Loads the first number into the accumulator and also stores it in
internal RAM location 20H as our initial assumption for the largest number.

LOOP: Labels the beginning of the loop.
INC DPTR: Increments DPTR to point to the next number.
MOVC A, @A+DPTR: Fetches the current number from external RAM using DPTR.

CJNE A, 20H, NEXT: Compares the current number (in A) with the assumed largest number (at
memory location 20H). If they are not equal, it jumps to the NexT label.

MOV 20H, A: If the current number is larger, replaces the content of memory location 20H (our largest
number) with it.

NEXT: Label for continuing to the next number.

DJNZ RO, LOOP: Decrements the counter (R0O) and jumps back to roop if the counter is not zero.

At the end of this program, the largest number will be stored in internal RAM location 20H.

External RAM Add

Add two nos. given in RO AND R1. Put the result in external RAM location 1030h (LSB) and 1031h (MSB). (3)

ORG 0000H ; Set the starting address of the program

.
r

Add the numbers in RO and R1

ADD A, RO ; Add the contents of RO to the accumulator

MOV R1, A ; Store the result in Rl (in case of overflow)

No. 15 /74

MPMC Programs by Milav Dabgar

; Store the result in external RAM

MOV DPTR, #1030H ; Load DPTR with the starting external RAM address
MOV A, R1 ; Move the lower byte of the result into A

MOVX @DPTR, A ; Store the lower byte at 1030h

INC DPTR ; Increment DPTR to point to 1031h

MOV A, R2 ; Move the higher byte of the result (if any) into A
MOVX @DPTR, A ; Store the higher byte at 1031lh

END ; End of program

Explanation:

1. ORG 0000H: Sets the starting address of the program.
2. ADD A, R1: Adds the contents of registers RO and R1, storing the result in the accumulator (A).

3. MOV R1, A: Stores the result in R1 as well. This handles the case where the addition results in a carry
(overflow), ensuring the MSB is stored correctly.

4. MOV DPTR, #1030H: Initializes the DPTR (Data Pointer) with the starting address (1030h) in external
RAM.

5. MOV A, R1/ MOVX @DPTR, A: Moves the lower byte of the result to the accumulator and then stores
it at the location pointed to by DPTR (1030h) using the Movx instruction (for external memory access).

6. INCDPTR/ MOV A, R2 / MOVX @DPTR, A: Increments DPTR to address 1031h, moves the higher byte
(if any) of the result into the accumulator, and stores it using Movx .

Key Points:

e DPTR Setup: Make sure your DPTR is correctly set up to point to the external memory region you want
to use.

e Overflow Handling: This code correctly handles the potential overflow when adding 8-bit numbers.

Register Exchange A & B

Write an ALP to exchange the content of A and B (3)

Method 1: Using a Temporary Register (e.g., RO)

MOV RO, A ; Store the contents of A in a temporary register (RO)
MOV A, B ; Move the contents of B into A
MOV B, RO ; Move the original contents of A (from RO) into B

Method 2: Using the XCH Instruction

XCH A, B ; Directly exchange the contents of A and B

Method 3: Using XOR Operations

No. 16 / 74

MPMC Programs by Milav Dabgar

XOR A, B ; XOR the contents of A and B, result in A
XCH A, B ; Exchange A and B
XOR A, B ; XOR A and B again (result in original value of A, now in B)

Explanation:

e Method 1: This is the most general approach, using a temporary register to hold one of the values
during the swap.

e Method 2: The xcH instruction is specifically designed for exchanging values between the
accumulator and another register. It's the most efficient way if your 8051 microcontroller supports it.

e Method 3: This method uses the XOR (Exclusive OR) operation, which has the interesting property that
when you XOR a value with itself, the result is zero. This allows for a clever exchange mechanism.

Register Multiplication A & B

Write an ALP to multiply the content of A and B. (3)

ORG 0000H ; Set program origin

MUL AB ; Multiply the accumulator (A) by register B. Result stored in A (LSB) and B
(MSB)

END ; End of program

Explanation:

e ORG 0000H: Indicates the starting address of the program's code.

e MUL AB: This is the core multiplication instruction. It multiplies the contents of the accumulator and
register B. The 16-bit result is stored across both the accumulator (lower 8 bits) and register B (higher
8 bits).

Important Notes:

e 8-bit Limitation: The 8051 can only directly multiply 8-bit numbers. If you need to multiply larger
numbers, you'll have to implement a multi-byte multiplication algorithm using a series of additions
and shifts.

e Result Location: Remember that the lower byte of the result will be in the accumulator (A) and the
higher byte will be in register B after the multiplication.

Example:
If A=5(00000101) and B =3 (00000011), then after muL aB:

e A (Accumulator) would contain 15 (00001111) - the lower byte

e B would contain 0 (00000000) - the higher byte (in this case, it's zero)

Register Division A & B

Write an ALP to divide the content of A and B. (3)

No. 17 /74

MPMC Programs by Milav Dabgar

ORG 0000H ; Set program origin
DIV AB ; Divide accumulator (A) by register B. Quotient in A, remainder in B

END ; End of program

Explanation:

e ORG 0000H: Sets the program's starting address.

e DIV AB: This is the core division instruction. It divides the contents of the accumulator (which should
contain the dividend) by the contents of register B (the divisor). After the division:

o Quotient: Stored in the accumulator (A)

o Remainder: Stored in register B
Important Notes

¢ Integer Division: The 8051's DIV instruction performs integer division, meaning any fractional part of
the result will be discarded.

e Zero Division: Ensure that the value in register B is not zero before performing the division. Dividing
by zero will cause an overflow flag (OV) to be set in the program status word (PSW).

Example:
If A=10(00001010) and B = 3 (00000011), then after p1v AB:
e A (Accumulator) would contain 3 (00000011) - the quotient

e B would contain 1 (00000001) - the remainder

RAM Copy 100h to 200h

Write a program to copy block of 8 data starting from location 100h to 200h.

Here's an assembly program for the 8051 microcontroller to copy a block of 8 bytes of data from starting
location 100H to destination location 200H:

ORG 0000H ; Program starts at memory location 0000H

; Initialization

MOV DPTR, #100H ; Set DPTR to point to the source block (100H)

MOV RO, #200H ; Set RO to point to the destination block (200H)
MOV R1, #08H ; Set Rl as the loop counter (8 bytes to copy)
COPY_LOOP:

MOVX A, @DPTR ; Read a byte from the source using DPTR

MOVX @QRO, A ; Write the byte to the destination using RO

INC DPTR ; Increment DPTR to point to the next source byte
INC RO ; Increment RO to point to the next destination byte

DJNZ R1l, COPY_LOOP ; Decrement Rl and jump if not zero

; End of Program (You can add more code here or an infinite loop)

No. 18 [/ 74

MPMC Programs by Milav Dabgar
END

Explanation
1. ORG 0000H: This directive tells the assembler to place the code starting from memory location 0000H.
2. Initialization:
o We load the Data Pointer (DPTR) with the starting address of the source block (100H).
o Register RO is loaded with the starting address of the destination block (200H).
o Register R1 is initialized to 8, which is the number of bytes we want to copy.

3. COPY_LOOP:

© MOVX A, @DPTR: Reads a byte from external RAM pointed to by DPTR and stores it in the

accumulator.

o Movx @RO, A:Writesthe byte from the accumulator to external RAM pointed to by RO.
© 1INC DPTR, INC RO:Increment both DPTR and RO to move to the next memory locations.

0 DJNZ R1, COPY_LOOP:Decrement R1 and jump back to the 'COPY_LOOP' label if R1 is not zero

(meaning we haven't copied all 8 bytes yet).
4. END: Signifies the end of the assembly program.
Key Points

e This assumes you have external RAM where you are storing the data.

e You may need to adapt the addresses (100H and 200H) if your data is stored elsewhere.

RAM Add

Write a program to add two bytes of data and store result in RO register.
Here's the 8051 assembly code to add two bytes of data and store the result in register RO:
; Data initialization - you might load these from memory in a real program

MOV A, #56H ; Load the first byte of data into the accumulator
MOV B, #23H ; Load the second byte of data into register B

; Addition
ADD A, B ; Add the value in register B to the accumulator
MOV RO, A ; Store the result (which is now in the accumulator) into RO

; End of program (you might do something with the result or add an infinite loop here)
END
Explanation

1. Data Initialization:

o MOV A, #56H:Loads the immediate value 56H (hexadecimal) into the accumulator (A register).

o MoV B, #23H:Loadsthe immediate value 23H into register B.

No. 19 /74

MPMC Programs by Milav Dabgar

2. Addition:

o apD A, B:Addsthe valuein register B to the value in the accumulator. The result remains in the

accumulator.
3. Storing the Result:

o Mov RO, A:Moves the value from the accumulator (which holds the sum) into register RO.

Important Points

e You can replace the mov instructions with ways to get data from other sources (memory, user input,
etc.).

e Make sure that the sum of your two data bytes can fit into 8 bits to avoid overflow.

Mazidi Book Assembly Language Programs

Add Value 3 to ACC Ten Times

This program adds value 3 to the ACC ten times

MOV A,#0 ;A=0, clear ACC

MOV R2,#10 ;load counter R2=10

AGAIN: ADD A,#03 ;add 03 to ACC

DJIJNZ R2,AGAIN ;repeat until R2=0,10 times
MOV R5,A ;save A in R5

Complement ACC 700 Times

Write a program to (a) load the accumulator with the value 55H, and (b) complement the ACC 700 times

MOV A,#55H ;A=55H

MOV R3,#10 ;R3=10, outer loop count

NEXT: MOV R2,#70 ;R2=70, inner loop count
AGAIN: CPL A ;complement A register

DJIJNZ R2,AGAIN ;repeat it 70 times

DJNZ R3,NEXT

Sum of 79H, F5H, E2H

Find the sum of the values 79H, F5H, E2H. Put the sum in registers RO (low byte) and R5 (high byte).

No. 20 /74

MPMC Programs by Milav Dabgar

MOV A,#0 ;A=0

MOV R5,A ;clear R5

ADD A,#79H ;A=0+79H=79H

JNC N_1 ;if CY=0, add next number

INC R5 ;if CY=1, increment R5

N 1: ADD A,#0F5H ;A=79+F5=6E and CY=1
JNC N_2 ;jump if CY=0

INC R5 ;if CY=1,increment R5 (R5=1)
N_2: ADD A,#0E2H ;A=6E+E2=50 and CY=1
JNC OVER ;jump if CY=0

INC R5 ;if CY=1, increment 5

OVER: MOV RO,A ;now R0O=50H, and R5=02

LCALL Example

ORG 0

BACK: MOV A,#55H ;load A with 55H

MOV P1,A ;send 55H to port 1

LCALL DELAY ;time delay

MOV A,#0AAH ;load A with AA (in hex)
MOV P1,A ;send AAH to port 1

LCALL DELAY

SJMP BACK ;keep doing this indefinitely

e ——————— this is delay subroutine --—-—-—-—————--—
ORG 300H ;put DELAY at address 300H

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0
RET ;return to caller (when R5 =0)

END

Use PUSH/POP in Subroutine

ORG 0

BACK: MOV A,#55H ;load A with 55H
MOV P1,A ;send 55H to pl

MOV R4,#99H

MOV R5,#67H

LCALL DELAY ;time delay

MOV A,#0AAH ;load A with AA

MOV P1,A ;send AAH to pl

LCALL DELAY

SJMP BACK ;keeping doing this

ORG 300H

DELAY: PUSH 4 ;push R4
PUSH 5 ;push R5

MOV R4 ,#0FFH;R4=FFH

NEXT: MOV R5,#0FFH;R5=FFH

No. 21/74

MPMC Programs by Milav Dabgar

AGAIN: DJNZ R5,AGAIN
DJNZ R4 ,NEXT

POP 5 ;POP into R5
POP 4 ;POP into R4
RET ;return to caller
END

Port 0 Output

The following code will continuously send out to port 0 the alternating value 55H and AAH

BACK: MOV A,#55H
MOV PO,A

ACALL DELAY

MOV A,#0AAH

MOV PO,A

ACALL DELAY

SJMP BACK

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0
RET ;return to caller (when R5 =0)

Port 0 Input

Port 0 is configured first as an input port by writing 1s to it, and then data is received from that port and
sent to P1

MOV A,#0FFH ;A=FF hex

MOV PO,A ;make PO an i/p port
;by writing it all 1s

BACK: MOV A,P0 ;get data from PO
MOV P1,A ;send it to port 1

SJMP BACK ;keep doing it

Port 1 Output

The following code will continuously send out to port 0 the alternating value 55H and AAH

MOV A,#55H
BACK: MOV P1,A
ACALL DELAY
CPL A

SJMP BACK

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0
RET ;return to caller (when R5 =0)

No. 22 /74

MPMC Programs by Milav Dabgar

Port 1 Input

Port 1 is configured first as an input port by writing 1s to it, then data is received from that port and saved
in R7 and R5

MOV A,#0FFH ;A=FF hex

MOV P1,A ;make Pl an input port
;by writing it all 1s

MOV A,P1 ;get data from P1

MOV R7,A ;save it to in reg R7
ACALL DELAY ;wait

MOV A,Pl ;another data from Pl
MOV R5,A ;save it to in reg R5

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0
RET ;return to caller (when R5 =0)

Port 1 Square Wave

Write the following programs. Create a square wave of 50% duty cycle on bit 0 of port 1.

HERE: SETB P1.0 ;set to high bit 0 of port 1
LCALL DELAY ;call the delay subroutine

CLR P1.0 ;P1.0=0

LCALL DELAY

SJMP HERE ;keep doing it

; ;Another way to write the above program is:
;HERE: CPL P1.0 ;set to high bit 0 of port 1
;LCALL DELAY ;call the delay subroutine

; SJMP HERE ;keep doing it

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0
RET ;return to caller (when R5 =0)

Port 1 to Port 0

Write a program to perform the following: (a) Keep monitoring the P1.2 bit until it becomes high. (b) When
P1.2 becomes high, write value 45H to port 0. (c) Send a high-to-low (H-to-L) pulse to P2.3

SETB P1.2 ;make P1l.2 an input

MOV A,#45H ;A=45H

AGAIN: JNB P1.2,AGAIN ; get out when P1l.2=1
MOV PO,A ;issue A to PO

SETB P2.3 ;make P2.3 high

CLR P2.3 ;make P2.3 low for H-to-L

No. 23 /74

MPMC Programs by Milav Dabgar

Oven Monitor

Assume that bit P2.3 is an input and represents the condition of an oven. If it goes high, it means that the
oven is hot. Monitor the bit continuously. Whenever it goes high, send a high-to-low pulse to port P1.5 to
turn on a buzzer.

HERE: JNB P2.3,HERE ;keep monitoring for high
SETB Pl1.5 ;set bit P1.5=1

CLR P1.5 ;make high-to-low

SJMP HERE ;keep repeating

Switch to Port 2

A switch is connected to pin P1.7. Write a program to check the status of SW and perform the following(a) If
SW=0, send letter 'N' to P2 (b) If SW=1, send letter 'Y' to P2

SETB P1.7 ;make Pl.7 an input

AGAIN: JB P1.2,0VER ;jump if P1.7=1

MOV P2, 'N' ;SW=0, issue 'N' to P2

SJMP AGAIN ;keep monitoring

OVER: MOV P2,#'Y' ;SWw=1, issue 'Y' to P2
SJMP AGAIN ;keep monitoring

Switch to Port 2 with Carry Flag

A switch is connected to pin P1.7. Write a program to check the status of SW and perform the following: (a)
If SW=0, send letter 'N' to P2 (b) If SW=1, send letter 'Y' to P2 Use the carry flag to check the switch status.

SETB P1.7 ;make P1l.7 an input

AGAIN: MOV C,Pl.2 ;read SW status into CF
JC OVER ;jump if Sw=1

MOV P2,#'N' ;SW=0, issue 'N' to P2

SJMP AGAIN ;keep monitoring

OVER: MOV P2,#'Y' ;SW=1, issue 'Y' to P2
SJMP AGAIN ;keep monitoring

LED from Switch

Example 4-7 A switch is connected to pin P1.0 and an LED to pin P2.7. Write a program to get the status of
the switch and send it to the LED

SETB P1.7 ;make P1l.7 an input

AGAIN: MOV C,Pl.0 ;read SW status into CF
MOV P2.7,C ;send SW status to LED

SJMP AGAIN ;keep repeating

Send 55H to P1 and P2

Example 5-1 Write code to send 55H to ports P1 and P2, using (a) their names (b) their addresses

No. 24 /74

MPMC Programs by Milav Dabgar
Solution :

i(a)

MOV A,#55H ;A=55H
MOV P1,A ;P1=55H
MOV P2,A ;P2=55H

; (b) From Table 5-1, Pl address=80H; P2 address=A0H
MOV A,#55H ;A=55H
MOV 80H,A ;P1=55H
MOV OAOH,A ;P2=55H

Push/Pop

Example 5-2 Show the code to push R5 and A onto the stack and then pop them back them into R2 and B,
where B =A and R2 = R5

Solution:

PUSH 05 ;push R5 onto stack

PUSH OEOH ;push register A onto stack
POP 0FO0H ;pop top of stack into B
;now register B = register A

POP 02 ;pop top of stack into R2

;now R2=R6

RAM Copy 40H to 41H

Example 5-3 Write a program to copy the value 55H into RAM memory locations 40H to 41H using (a) direct
addressing mode, (b) register indirect addressing mode without a loop, and (c) with a loop

Solution:

i(a)

MOV A,#55H ;load A with value 55H

MOV 40H,A ;copy A to RAM location 40H
MOV 41H,A ;copy A to RAM location 41H

i (b)

MOV A,#55H ;load A with value 55H

MOV RO,#40H ;load the pointer. R0=40H
MOV @RO,A ;copy A to RAM RO points to
INC RO ;increment pointer. Now R0=41h
MOV @RO,A ;copy A to RAM RO points to
i(c)

MOV A,#55H ;A=55H

MOV RO,#40H ;load pointer.R0=40H,

MOV R2,#02 ;load counter, R2=3

AGAIN: MOV @QRO,A ;copy 55 to RAM RO points to
INC RO ;increment RO pointer

DJIJNZ R2,AGAIN ;loop until counter = zero

No. 25 /74

MPMC Programs by Milav Dabgar

RAM Clear

Example 5-4 Write a program to clear 16 RAM locations starting at RAM address 60H

Solution:

CLR A ;A=0

MOV R1,#60H ;load pointer. R1=60H

MOV R7,#16 ;load counter, R7=16

AGAIN: MOV @R1,A ;clear RAM Rl points to
INC Rl ;increment R1 pointer

DJNZ R7,AGAIN ;loop until counter=zero

RAM Copy 35H to 60H

Example 5-5 Write a program to copy a block of 10 bytes of data from 35H to 60H

Solution:

MOV RO,#35H ;source pointer

MOV R1l,#60H ;destination pointer

MOV R3,#10 ;counter

BACK: MOV A,@RO ;get a byte from source
MOV @R1,A ;copy it to destination

INC RO ;increment source pointer

INC Rl ;increment destination pointer
DJNZ R3,BACK ;keep doing for ten bytes

ROM Copy

Example 5-6 In this program, assume that the word "USA" is burned into ROM locations starting at 200H.
And that the program is burned into ROM locations starting at 0. Analyze how the program works and state
where "USA" is stored after this program is run.

Solution:

ORG 0000H ;burn into ROM starting at 0

MOV DPTR,#200H ;DPTR=200H look-up table addr
CLR A j;clear A(A=0)

MOVC A,@A+DPTR ;get the char from code space
MOV RO,A ;save it in RO

INC DPTR ;DPTR=201 point to next char

CLR A ;clear A(A=0)

MOVC A,@A+DPTR ;get the next char

MOV R1,A ;save it in R1

INC DPTR ;DPTR=202 point to next char

CLR A ;clear A(A=0)

MOVC A,@A+DPTR ;get the next char

MOV R2,A ;save it in R2

Here: SJMP HERE ;stay here

No. 26 /74

MPMC Programs by Milav Dabgar

;Data is burned into code space starting at 200H
ORG 200H

MYDATA:DB "USA"

END ;end of program

Port 1 to Port 2

Example 5-8 Write a program to get the x value from P1 and send x2 to P2, continuously

Solution:

ORG 0

MOV DPTR,#300H ;LOAD TABLE ADDRESS

MOV A,#0FFH ;A=FF

MOV P1,A ;CONFIGURE P1 INPUT PORT

BACK: MOV A,P1 ;GET X

MOVC A,@A+DPTR ;GET X SQAURE FROM TABLE
MOV P2,A ;ISSUE IT TO P2

SJMP BACK ;KEEP DOING IT

ORG 300H
XSQR TABLE: DB 0,1,4,9,16,25,36,49,64,81
END

Toggle P1

Example 5-10 Write a program to toggle P1 a total of 200 times. Use RAM location 32H to hold your counter
value instead of registers RO - R7

Solution:

MOV P1l,#55H ;P1=55H

MOV A, P1

MOV 32H,#200 ;load counter value into RAM loc 32H
LOPl: CPL A ;toggle P1

MOV P1, A

ACALL DELAY

DJNZ 32H,LOPl ;repeat 200 times

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0
RET ;return to caller (when R5 =0)

Switch to Port 2

Example 5-24 A switch is connected to pin P1.7. Write a program to check the status of the switch and make
the following decision. (a) If SW =0, send '0' to P2 (b) If SW =1, send "1' to P2

Solution:

No. 27 [74

MPMC Programs by Milav Dabgar

SW EQU P1.7

MYDATA EQU P2

HERE: MOV C,SW

JC OVER

MOV MYDATA,#'0"’

SJMP HERE

OVER: MOV MYDATA,#'1l'
SJMP HERE

END

ROM to RAM

Example 5-27 Assume that the on-chip ROM has a message. Write a program to copy it from code space
into the upper memory space starting at address 80H. Also, as you place a byte in upper RAM, give a copy
to PO.

Solution:

ORG 0

MOV DPTR,#MYDATA

MOV R1,#80H ;access the upper memory
Bl: CLR A

MOVC A,@A+DPTR ;copy from code ROM
MOV @R1,A ;store in upper memory
MOV PO,A ;give a copy to PO

JZ EXIT ;exit if last byte

INC DPTR ;increment DPTR

INC R1 ;increment R1

SJMP Bl ;repeat until last byte
EXIT: SJMP $;stay here when finished

ORG 300H
MYDATA: DB "The Promise of World Peace",0
END

RAM Sum

Assume that RAM locations 40 - 44H have the following values. Write a program to find the sum of the
values. At the end of the program, register A should contain the low byte and R7 the high byte. 40 = (7D), 41
= (EB), 42 = (C5), 43 = (5B), 44 = (30)

Solution:

No. 28 /74

MPMC Programs by Milav Dabgar

MOV RO,#40H ;load pointer

MOV R2,#5 ;load counter

CLR A ;A=0

MOV R7,A ;clear R7

AGAIN: ADD A,Q@RO0 ;add the byte ptr to by RO
JNC NEXT ;if CY=0 don't add carry

INC R7 ;keep track of carry

NEXT: INC RO ;increment pointer

DJNZ R2,AGAIN ;repeat until R2 is zero

Add Two 16-bit Numbers

Write a program to add two 16-bit numbers. Place the sum in R7 and R6; R6 should have the lower byte.

Solution:

CLR C ;make CY=0

MOV A, #0E7H ;load the low byte now A=E7H
ADD A, #8DH ;add the low byte

MOV R6, A ;save the low byte sum in R6
MOV A, #3CH ;load the high byte

ADDC A, #3BH j;add with the carry

MOV R7, A ;save the high byte sum

BCD Sum

Assume that 5 BCD data items are stored in RAM locations starting at 40H, as shown below. Write a
program to find the sum of all the numbers. The result must be in BCD. 40=(71), 41=(11), 42=(65), 43=(59),
44=(37)

Solution:

MOV RO,#40H ;Load pointer

MOV R2,#5 ;Load counter

CLR A ;A=0

MOV R7,A ;Clear R7

AGAIN: ADD A,@RO0 ;add the byte pointer to by RO
DA A ;adjust for BCD

JNC NEXT ;if CY=0 don't accumulate carry

INC R7 ;keep track of carries

NEXT: INC RO ;increment pointer

DJNZ R2,AGAIN ;repeat until R2 is 0

Packed BCD to ASCII

Assume that register A has packed BCD, write a program to convert packed BCD to two ASCII numbers and
place them in R2 and R6.

No. 29 /74

MPMC Programs by Milav Dabgar

MOV A,#29H ;A=29H, packed BCD

MOV R2,A ;keep a copy of BCD data

ANL A,#0FH ;mask the upper nibble (A=09)
ORL A,#30H ;make it an ASCII, A=39H('9")
MOV R6,A ;save it

MOV A,R2 ;A=29H, get the original data
ANL A,#0F0H ;mask the lower nibble

RR A ;rotate right

RR A ;rotate right

RR A ;rotate right

RR A ;rotate right

ORL A,#30H ;A=32H, ASCII char. '2'

MOV R2,A ;save ASCII char in R2

Find Timer 0 Delay

Example 9-7 Find the delay generated by timer 0 in the following code, using both of the Methods of Figure
9-4. Do not include the overhead due to instruction.

CLR P2.3 ;Clear P2.3

MOV TMOD,#01 ;Timer 0, l6-bitmode

HERE: MOV TLO,#3EH ;TLO=3Eh, the low byte
MOV THO,#0B8H ;TH0=B8H, the high byte
SETB P2.3 ;SET high timer 0

SETB TRO ;Start the timer 0

AGAIN: JNB TFO0,AGAIN ;Monitor timer flag 0
CLR TRO ;Stop the timer 0

CLR TFO0 ;Clear TFO for next round

CLR P2.3

Solution:

(a) (FFFFH - B83E + 1) =47C2H = 18370 in decimal and 18370 _ 1.085 us = 19.93145 ms

(b) Since TH - TL = B83EH = 47166 (in decimal) we have 65536 - 47166 = 18370. This means that the timer
counts from B38EH to FFFF. This plus Rolling over to 0 goes through a total of 18370 clock cycles, where
each clock is 1.085 us in duration. Therefore, we have 18370 _ 1.085 us = 19.93145 ms as the width of the
pulse.

Modify TL and TH

Example 9-8 Modify TL and TH in Example 9-7 to get the largest time delay possible. Find the delay in ms. In
your calculation, exclude the overhead due to the instructions in the loop.

Solution: To get the largest delay we make TL and TH both 0. This will count up from 0000 to FFFFH and
then roll over to zero.

No. 30 /74

MPMC Programs by Milav Dabgar

CLR P2.3 ;Clear P2.3

MOV TMOD,#01 ;Timer 0, l6-bitmode

HERE: MOV TLO,#0 ;TL0=0, the low byte

MOV THO,#0 ;THO=0, the high byte

SETB P2.3 ;SET high P2.3

SETB TRO ;Start timer 0

AGAIN: JNB TFO0,AGAIN ;Monitor timer flag 0
CLR TRO ;Stop the timer 0

CLR TFO0 ;Clear timer 0 flag

CLR P2.3

Making TH and TL both zero means that the timer will count from 0000 to FFFF, and then roll over to raise
the TF flag. As a result, it goes through a total Of 65536 states. Therefore, we have delay = (65536 - 0) *
1.085 us =71.1065ms.

Square Wave

Example 9-9 The following program generates a square wave on P1.5 continuously using timer 1 for a time
delay. Find the frequency of the square wave if XTAL = 11.0592 MHz. In your calculation do not include the
overhead due to Instructions in the loop.

MOV TMOD,#10;Timer 1, mod 1 (l6-bitmode)

AGAIN: MOV TL1,#34H ;TL1=34H, low byte of timer
MOV TH1,#76H ;TH1=76H, high byte timer

SETB TR1 ;start the timer 1

BACK: JNB TF1,BACK ;till timer rolls over

CLR TR1 ;stop the timer 1

CPL P1l.5 ;comp. pl. to get hi, 1lo

CLR TFl ;clear timer flag 1

SJMP AGAIN ;is not auto-reload

Solution:

Since FFFFH - 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276 clock count and 35276 * 1.085 us = 38.274
ms for half of the square wave. The frequency = 13.064Hz. Also notice that the high portion and low portion
of the square wave pulse are equal. In the above calculation, the overhead due to all the instruction in the
loop is not included.

Find Timer 0 Delay

Example 9-10 Assume that XTAL = 11.0592 MHz. What value do we need to load the timer's register if we
want to have a time delay of 5 ms (milliseconds)? Show the program for timer 0 to create a pulse width of 5
ms on P2.3.

Solution: Since XTAL = 11.0592 MHz, the counter counts up every 1.085 us. This means that out of many
1.085 us intervals we must make a 5 ms pulse. To get that, we divide one by the other. We need 5 ms /
1.085 us = 4608 clocks. To Achieve that we need to load into TL and TH the value 65536 - 4608 = EEOOH.
Therefore, we have TH = EE and TL = 00.

No. 31/74

MPMC Programs by Milav Dabgar

CLR P2.3 ;Clear P2.3

MOV TMOD,#01 ;Timer 0, l6-bitmode

HERE: MOV TLO,#0 ;TL0=0, the low byte

MOV THO,#0EEH ;THO=EE, the high byte

SETB P2.3 ;SET high P2.3

SETB TRO ;Start timer 0

AGAIN: JNB TFO0,AGAIN ;Monitor timer flag 0
CLR TRO ;Stop the timer 0

CLR TFO0 ;Clear timer 0 flag

Generate Square Wave

Example 9-11 Assume that XTAL = 11.0592 MHz, write a program to generate a square wave of 2 kHz
frequency on pin P1.5.

Solution:
This is similar to Example 9-10, except that we must toggle the bit to generate the square wave. Look at the
following steps.

e (@)T=1/f=1/2kHz =500 us the period of square wave.
e (b)1/2ofitfor the high and low portion of the pulse is 250 us.
e (c)250us/ 1.085 us =230 and 65536 - 230 = 65306 which in hex is FFTAH.

e (d)TL=1Aand TH =FF, all in hex. The program is as follow.

MOV TMOD,#01 ;Timer 0, l6-bitmode

AGAIN: MOV TL1,#1AH ;TL1=1A, low byte of timer
MOV TH1,#0FFH ;TH1=FF, the high byte

SETB TR1 ;Start timer 1

BACK: JNB TF1,BACK ;until timer rolls over

CLR TR1 ;Stop the timer 1

CLR P1.5 ;Clear timer flag 1

CLR TFl ;Clear timer 1 flag

SJMP AGAIN ;Reload timer

Generate Square Wave 50kHz

Example 9-12 Assume XTAL = 11.0592 MHz, write a program to generate a square wave of 50 kHz frequency
on pin P2.3.

Solution: Look at the following steps.

e (a)T=1/50=20ms, the period of square wave.

® (b)1/2of it for the high and low portion of the pulse is 10 ms.

e (c)10ms/ 1.085us=9216 and 65536 - 9216 = 56320 in decimal, and in hex it is DCOOH.
e (d)TL=00and TH = DC (hex).

No. 32 /74

MPMC Programs by Milav Dabgar

MOV TMOD,#10H ;Timer 1, mod 1

AGAIN: MOV TL1,#00 ;TL1=00,low byte of timer

MOV TH1,#0DCH ;TH1=DC, the high byte

SETB TR1 ;Start timer 1

BACK: JNB TF1,BACK ;until timer rolls over

CLR TR1 ;Stop the timer 1

CLR P2.3 ;Comp. p2.3 to get hi, lo

SJMP AGAIN ;Reload timer, mode 1 isn't auto-reload

Find Square Wave Frequency

Example 9-14 Assume XTAL = 11.0592 MHz, find the frequency of the square wave generated on pin P1.0 in

the following program

MOV TMOD,#20H ;T1/8-bit/auto reload

MOV TH1,#5 ;TH1 = 5

SETB TR1 ;start the timer 1

BACK: JNB TF1,BACK ;till timer rolls over
CPL P1.0 ;P1.0 to hi, lo

CLR TFl ;clear Timer 1 flag

SJMP BACK ;mode 2 is auto-reload

Solution: First notice the target address of SJMP. In mode 2 we do not need to reload TH since it is auto-
reload. Now (256 - 05) _ 1.085 us = 251 _ 1.085 us = 272.33 us is the high portion of the pulse. Since itis a
50% duty cycle square wave, the period T is twice that; asaresult T =2 * 272.33 us = 544.67 us and the
frequency = 1.83597 kHz

Find Square Wave Frequency

Example 9-15 Find the frequency of a square wave generated on pin P1.0.

Solution:

MOV TMOD,#2H ;Timer 0, mod 2 (8-bit, auto reload)
MOV THO,#0

AGAIN: MOV R5,#250 ;multiple delay count

ACALL DELAY

CPL P1.0

SIJMP AGAIN

DELAY: SETB TRO ;start the timer 0

BACK: JNB TFO0,BACK ;stay timer rolls over

CLR TRO ;stop timer

CLR TF0 ;clear TF for next round

DJNZ R5,DELAY

RET ;T = 2 (250 * 256 * 1.085 us) = 138.88ms, and frequency = 72 Hz

Counter 1

Example 9-18 Assuming that clock pulses are fed into pin T1, write a program for counter 1 in mode 2 to
count the pulses and display the state of the TL1 count on P2, which connects to 8 LEDs.

No. 33 /74

MPMC Programs by Milav Dabgar

Solution:

MOV TMOD,#01100000B ;counter 1, mode 2, C/T=1 external pulses
MOV TH1,#0 ;clear TH1

SETB P3.5 ;make T1 input

AGAIN: SETB TR1 ;start the counter

BACK: MOV A,TL1 ;get copy of TL

MOV P2,A ;display it on port 2

JNB TF1,Back ;keep doing, if TF = 0

CLR TR1 ;stop the counter 1

CLR TF1l ;make TF=0

SJMP AGAIN ;keep doing it

Serial Transfer

Write a program for the 8051 to transfer letter 'A’ serially at 4800 baud, continuously.

Solution:

MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-6 ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

AGAIN: MOV SBUF,#"A" ;letter 'A' to transfer
HERE: JNB TI,HERE ;wait for the last bit

CLR TI ;clear TI for next char

SJMP AGAIN ;keep sending A

Serial Transfer

Write a program for the 8051 to transfer 'YES' serially at 9600 baud, 8-bit data, 1 stop bit, do this
continuously

Solution:

MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-3 ;9600 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

AGAIN: MOV A,#"Y" ;transfer 'Y'

ACALL TRANS

MOV A,#"E" ;transfer 'E'

ACALL TRANS

MOV A,#"S" ;transfer 'S’

ACALL TRANS

SJMP AGAIN ;keep doing it

;serial data transfer subroutine

TRANS: MOV SBUF,A ;load SBUF

HERE: JNB TI,HERE ;wait for the last bit
CLR TI ;get ready for next byte

RET

No. 34 /74

MPMC Programs by Milav Dabgar

Serial Receive

Write a program for the 8051 to receive bytes of data serially, and put them in P1, set the baud rate at 4800,
8-bit data, and 1 stop bit

Solution:

MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-6 ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

HERE: JNB RI,HERE ;wait for char to come in
MOV A,SBUF ;saving incoming byte in A

MOV P1,A ;send to port 1

CLR RI ;get ready to receive next byte

SJMP HERE ;keep getting data

Serial Port

Example 10-5 Assume that the 8051 serial port is connected to the COM port of IBM PC, and on the PC, we
are using the terminal.exe program to send and receive data serially. P1 and P2 of the 8051 are connected
to LEDs and switches, respectively. Write an 8051 program to: (a) send to PC the message "We Are Ready".
(b) receive any data send by PC and put it on LEDs connected to P1, and (c) get data on switches connected
to P2 and send it to PC serially. The program should perform part (a) once, but parts (b) and (c)
continuously, use 4800 baud rate.

Solution:

ORG 0

MOV P2,#0FFH ;make P2 an input port

MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,#0FAH ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

MOV DPTR,#MYDATA ;load pointer for message
H 1: CLR A

MOVC A,@A+DPTR ;get the character

JZz B_1 ;if last character get out

ACALL SEND ;otherwise call transfer

INC DPTR ;next one

SJMP H_1 ;stay in loop

B 1: MOV a,P2 ;read data on P2

ACALL SEND ;transfer it serially

ACALL RECV ;get the serial data

MOV P1,A ;display it on LEDs

SJMP B 1 ;stay in loop indefinitely

;———-serial data transfer. ACC has the data------

SEND: MOV SBUF,A ;load the data
H 2: JNB TI,H_ 2 ;stay here until last bit gone

No. 35 /74

MPMC Programs by Milav Dabgar

CLR TI ;get ready for next char

RET ;return to caller

;———-Receive data serially in ACC--——————————————
RECV: JNB RI,RECV ;wait here for char

MOV A,SBUF ;save it in ACC

CLR RI ;get ready for next char

RET ;return to caller

————— The message--—-———-————————-
MYDATA: DB "We Are Ready",0
END

Serial Port

Example 10-6 Assume that XTAL = 11.0592 MHz for the following program, state (a) what this program does,
(b) compute the frequency used by timer 1 to set the baud rate, and (c) find the baud rate of the data
transfer.

Solution:

¢ (a) This program transfers ASCII letter B (01000010 binary) continuously

e (b) With XTAL = 11.0592 MHz and SMOD = 1 in the above program,

e we have: 11.0592 /12 =921.6 kHz

e machine cycle frequency. 921.6 / 16 = 57,600 Hz

e frequency used by timer 1 to set the baud rate.57600 / 3 = 19,200, the baud rate.

MOV A,PCON ;A=PCON

MOV ACC.7 ;make D7=1

MOV PCON,A ;SMOD=1, double baud rate with same XTAL freq.
MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,-3 ;19200 (57600/3 =19200)

MOV SCON,#50H ;8-bit data, 1 stop bit, RI enabled
SETB TR1 ;start timer 1

MOV A,#'B' ;transfer letter B

A 1: CLR TI ;make sure TI=0

MOV SBUF,A ;transfer it

H 1: JNB TI,H 1 ;stay here until the last bit is gone
SJMP A 1 ;keep sending 'B' again

Serial Port

Example 10-10 Write a program to send the message "The Earth is but One Country" to serial port. Assume
a SWis connected to pin P1.2. Monitor its status and set the baud rate as follows: SW = 0, 4800 baud rate,
SW =1, 9600 baud rate Assume XTAL = 11.0592 MHz, 8-bit data, and 1 stop bit.

Solution:
SW BIT P1.2

No. 36 /74

MPMC Programs by Milav Dabgar

ORG OH ;starting position

MAIN:

MOV TMOD,#20H

MOV TH1,#-6 ;4800 baud rate (default)
MOV SCON,#50H

SETB TR1

SETB SW ;make SW an input

Sl: JNB SW,SLOWSP ;check SW status
MOV A,PCON ;read PCON

SETB ACC.7 ;set SMOD high for 9600
MOV PCON,A ;write PCON

SJMP OVER ;send message

SLOWSP:

MOV A,PCON ;read PCON

SETB ACC.7 ;set SMOD low for 4800

MOV PCON,A ;write PCON

OVER: MOV DPTR,#MESS1 ;load address to message
FN: CLR A

MOVC A, @A+DPTR ;read value

JZ S1 ;check for end of line

ACALL SENDCOM ;send value to serial port
INC DPTR ;move to next value

SJMP FN ;repeat

SENDCOM:

MOV SBUF,A ;place value in buffer

HERE: JNB TI,HERE ;wait until transmitted
CLR TI ;clear

RET ;return

MESS1l: DB "The Earth is but One Country",0
END

Square Wave

Example 11-2 Write a program that continuously get 8-bit data from PO and sends it to P1 while
simultaneously creating a square wave of 200 us period on pin P2.1. Use timer O to create the square wave.
Assume that XTAL = 11.0592 MHz.

Solution:

;We will use timer 0 in mode 2 (auto reload). THO = 100/1.085 us = 92
;——-upon wake-up go to main, avoid using

;memory allocated to Interrupt Vector Table

ORG 0000H
LJIJMP MAIN ;by-pass interrupt vector table

;——-ISR for timer 0 to generate square wave

ORG 000BH ;Timer 0 interrupt vector table

No. 37 /74

MPMC Programs by Milav Dabgar

CPL P2.1 ;toggle P2.1 pin
RETI ;return from ISR

;——-The main program for initialization

ORG 0030H ;after vector table space

MAIN: MOV TMOD,#02H ;Timer 0, mode 2

MOV PO,#0FFH ;make PO an input port

MOV THO,#-92 ;THO0=A4H for -92

MOV IE,#82H ;IE=10000010 (bin) enable Timer 0
SETB TRO ;Start Timer 0

BACK: MOV A,PO0 ;get data from PO

MOV P1,A ;issue it to P1

SJMP BACK ;keep doing it loop unless interrupted by TFO
END

Square Wave

Example 11-3 Rewrite Example 11-2 to create a square wave that has a high portion of 1085 us and a low
portion of 15 us. Assume XTAL=11.0592MHz. Use timer 1.

Solution:
Since 1085 us is 1000 * 1.085 we need to use mode 1 of timer 1. upon wake-up go to main, avoid using
memory allocated to Interrupt Vector Table

ORG 0000H

LJMP MAIN ;by-pass int. vector table
;——-ISR for timer 1 to generate square wave
ORG 001BH ;Timer 1 int. vector table

LJMP ISR T1 ;jump to ISR

;——The main program for initialization
ORG 0030H ;after vector table space

MAIN: MOV TMOD,#10H ;Timer 1, mode 1

MOV PO,#0FFH ;make PO an input port

MOV TL1,#018H ;TL1=18 low byte of -1000
MOV TH1,#0FCH ;TH1=FC high byte of -1000
MOV IE,#88H ;10001000 enable Timer 1 int
SETB TR1 ;Start Timer 1

BACK: MOV A,P0 ;get data from PO

MOV P1l,A ;issue it to P1

SJMP BACK ;keep doing it

;Timer 1 ISR. Must be reloaded, not auto-reload
ISR _Tl: CLR TRl ;stop Timer 1

MOV R2,#4 ; 2MC

CLR P2.1 ;P2.1=0, start of low portion
HERE: DJNZ R2,HERE ;4x2 machine cycle 8MC
MOV TL1,#18H ;load Tl low byte value 2MC
MOV TH1,#0FCH;load T1 high byte value 2MC
SETB TR1 ;starts timerl 1MC

SETB P2.1 ;P2.1=1,back to high 1MC

RETI ;return to main

No. 38 /74

MPMC Programs by Milav Dabgar

END

Interrupt

Example 11-5 Assume that the INT1 pin is connected to a switch that is normally high. Whenever it goes
low, it should turn on an LED. The LED is connected to P1.3 and is normally off. When it is turned on it
should stay on for a fraction of a second. As long as the switch is pressed low, the LED should stay on.

Solution:

ORG 0000H

LJMP MAIN ;by-pass interrupt vector table
;——ISR for INT1 to turn on LED

ORG 0013H ;INT1 ISR

SETB P1.3 ;turn on LED

MOV R3,#255

BACK: DJNZ R3,BACK ;keep LED on for a while
CLR P1.3 ;turn off the LED

RETI ;return from ISR

;——MAIN program for initialization

ORG 30H

MAIN: MOV IE,#10000100B ;enable external INT 1
HERE: SJMP HERE ;stay here until get interrupted
END

Interrupt INT1

Assume that pin 3.3 (INT1) is connected to a pulse generator, write a program in which the falling edge of
the pulse will send a high to P1.3, which is connected to an LED (or buzzer). In other words, the LED is
turned on and off at the same rate as the pulses are applied to the INT1 pin.

Solution:

ORG 0000H

LJMP MAIN

;——-ISR for hardware interrupt INT1 to turn on LED
ORG 0013H ;INT1 ISR

SETB P1.3 ;turn on LED

MOV R3,#255

BACK: DJNZ R3,BACK ;keep the buzzer on for a while
CLR P1.3 ;turn off the buzzer

RETI ;return from ISR

F—————— MAIN program for initialization

ORG 30H

MAIN: SETB TCON.2 ;make INT1 edge-triggered int.
MOV IE,#10000100B ;enable External INT 1

HERE: SJMP HERE ;stay here until get interrupted
END

P1 to P2 and Serial Port

No.39 /74

MPMC Programs by Milav Dabgar

Example 11-8 Write a program in which the 8051 reads data from P1 and writes it to P2 continuously while
giving a copy of it to the serial COM port to be transferred serially. Assume that XTAL=11.0592. Set the baud
rate at 9600.

Solution:

ORG 0000H

LJMP MAIN

ORG 23H

LJIJMP SERIAL ;jump to serial int ISR

ORG 30H

MAIN: MOV P1l,#0FFH ;make Pl an input port
MOV TMOD,#20H ;timer 1, auto reload

MOV TH1,#0FDH ;9600 baud rate

MOV SCON,#50H ;8-bit,1l stop, ren enabled
MOV IE,10010000B ;enable serial int.
SETB TR1 ;start timer 1

BACK: MOV A,Pl ;read data from port 1
MOV SBUF,A ;give a copy to SBUF

MOV P2,A ;send it to P2

SJMP BACK ;stay in loop indefinitely

HEE SERIAL PORT ISR

ORG 100H

SERIAL: JB TI,TRANS;jump if TI is high
MOV A,SBUF ;otherwise due to receive

CLR RI ;clear RI since CPU doesn't

RETI ;return from ISR

TRANS: CLR TI ;clear TI since CPU doesn't
RETI ;return from ISR

END

P1 to P2 and PO to Serial Port

Example 11-9 Write a program in which the 8051 gets data from P1 and sends it to P2 continuously while
incoming data from the serial port is sent to PO. Assume that XTAL=11.0592. Set the baud rata at 9600.

Solution:

ORG 0000H

LJMP MAIN

ORG 23H

LJMP SERIAL ;jump to serial int ISR

ORG 30H

MAIN: MOV P1l,#0FFH ;make Pl an input port
MOV TMOD,#20H ;timer 1, auto reload

MOV TH1,#0FDH ;9600 baud rate

MOV SCON,#50H ;8-bit,1 stop, ren enabled
MOV IE,10010000B ;enable serial int.
SETB TR1 ;start timer 1

BACK: MOV A,Pl ;read data from port 1

No. 40 /74

MPMC Programs by Milav Dabgar

MOV P2,A ;send it to P2
SJMP BACK ;stay in loop indefinitely

HEE SERIAL PORT ISR

ORG 100H

SERIAL: JB TI,TRANS;jump if TI is high
MOV A,SBUF ;otherwise due to receive

MOV P0O,A ;send incoming data to PO

CLR RI ;clear RI since CPU doesn't

RETI ;return from ISR

TRANS: CLR TI ;clear TI since CPU doesn't
RETI ;return from ISR

END

PO to Serial Port and P1 to P2

Example 11-10 Write a program using interrupts to do the following: (a) Receive data serially and sent it to
PO, (b) Have P1 port read and transmitted serially, and a copy given to P2, (c) Make timer O generate a
square wave of 5kHz frequency on P0.1. Assume that XTAL-11,0592. Set the baud rate at 4800.

Solution:

ORG 0

LJMP MAIN

ORG 000BH ;ISR for timer 0

CPL P0.1 ;toggle PO.1

RETI ;return from ISR

ORG 23H ;

LJIJMP SERIAL ;jump to serial interrupt ISR
ORG 30H

MAIN: MOV P1l,#0FFH ;make Pl an input port
MOV TMOD,#22H;timer 1,mode 2(auto reload)
MOV TH1,#0F6H;4800 baud rate

MOV SCON,#50H;8-bit, 1 stop, ren enabled
MOV THO,#-92 ;for 5kHZ wave

MOV IE,10010010B ;enable serial int.

SETB TR1 ;start timer 1

SETB TRO ;start timer 0

BACK: MOV A,Pl ;read data from port 1

MOV SBUF,A ;give a copy to SBUF

MOV P2,A ;send it to P2

SJMP BACK ;stay in loop indefinitely

HE SERIAL PORT ISR

ORG 100H

SERIAL:JB TI,TRANS;jump if TI is high
MOV A,SBUF ;otherwise due to receive

MOV PO,A ;send serial data to PO

CLR RI ;clear RI since CPU doesn't

RETI ;return from ISR

TRANS: CLR TI ;clear TI since CPU doesn't
RETI ;return from ISR

No. 41/74

MPMC Programs by Milav Dabgar

END

LCD

To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. Then send a high-to-low
pulse to the E pin to enable the internal latch of the LCD. This is shown in the code below. calls a time delay
before sending next data/command. P1.0-P1.7 are connected to LCD data pins DO-D7. P2.0 is connected to
RS pin of LCD. P2.1 is connected to R/W pin of LCD. P2.2 is connected to E pin of LCD

ORG 0

MOV A,#38H ;INIT. LCD 2 LINES, 5X7 MATRIX
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#0EH ;display on, cursor on
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#01 ;clear LCD
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#06H ;shift cursor right
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#84H ;cursor at line 1, pos. 4
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#'N' ;display letter N
ACALL DATAWRT ;call display subroutine
ACALL DELAY ;give LCD some time

MOV A,#'0O' ;display letter O
ACALL DATAWRT ;call display subroutine
AGAIN: SJMP AGAIN ;stay here

COMNWRT: ;send command to LCD
MOV P1,A ;copy reg A to port 1
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
CLR P2.2 ;E=0 for H-to-L pulse
RET

DATAWRT: ;write data to LCD
MOV P1l,A ;copy reg A to port 1
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse

No. 42 /74

MPMC Programs by Milav Dabgar

CLR P2.2 ;E=0 for H-to-L pulse
RET
DELAY: MOV R3,#50 ;50 or higher for fast CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4,HERE ;stay until R4 becomes 0
DJNZ R3,HERE2
RET
END

LCD Busy flag checking

Check busy flag before sending data, command to LCD. p1=data pin, P2.0 connected to RS pin, P2.1
connected to R/W pin, P2.2 connected to E pin

ORG 0

MOV A,#38H ;init. LCD 2 lines ,5x7 matrix
ACALL COMMAND ;issue command

MOV A,#0EH ;LCD on, cursor on
ACALL COMMAND ;issue command

MOV A,#01H ;clear LCD command
ACALL COMMAND ;issue command

MOV A,#06H ;shift cursor right
ACALL COMMAND ;issue command

MOV A,#86H ;cursor: line 1, pos. 6
ACALL COMMAND ;command subroutine
MOV A,#'N' ;display letter N
ACALL DATA DISPLAY

MOV A,#'0O' ;display letter O
ACALL DATA DISPLAY

HERE:SJMP HERE ;STAY HERE

COMMAND :
ACALL READY ;is LCD ready?
MOV P1l,A ;issue command code
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET

DATA DISPLAY:
ACALL READY ;is LCD ready?
MOV P1l,A ;issue data
SETB P2.0 ;RS=1 for data
CLR P2.1 ;R/W =0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET

READY:
SETB P1.7 ;make Pl.7 input port

CLR P2.0 ;RS=0 access command reg

No. 43 /74

MPMC Programs by Milav Dabgar

SETB P2.1 ;R/W=1 read command reg

;read command reg and check busy flag
BACK:SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0 H-to-L pulse
JB P1.7,BACK ;stay until busy flag=0
RET
END

LCD commands

To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. Then send a high-to-low
pulse to the E pin to enable the internal latch of the LCD. This is shown in the code below. calls a time delay
before sending next data/command. P1.0-P1.7 are connected to LCD data pins DO-D7. P2.0 is connected to
RS pin of LCD. P2.1 is connected to R/W pin of LCD. P2.2 is connected to E pin of LCD

ORG OH

MOV A,#38H ;INIT. LCD 2 LINES, 5X7 MATRIX
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#0EH ;display on, cursor on
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#01 ;clear LCD
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#06H ;shift cursor right
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#84H ;cursor at line 1, pos. 4
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#'N' ;display letter N
ACALL DATAWRT ;call display subroutine
ACALL DELAY ;give LCD some time

MOV A,#'0O' ;display letter O
ACALL DATAWRT ;call display subroutine
AGAIN: SJMP AGAIN ;stay here

COMNWRT: ;send command to LCD
MOV P1l,A ;copy reg A to port 1
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse

No. 44 /74

MPMC Programs by Milav Dabgar

ACALL DELAY ;give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET
DATAWRT: ;write data to LCD
MOV P1,A ;copy reg A to port 1
SETB P2.0 ;RS=1 for data
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
ACALL DELAY ;give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET
DELAY: MOV R3,#50 ;50 or higher for fast CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4,HERE ;stay until R4 becomes 0
DJNZ R3,HERE2
RET
END

LCD Busy flag checking commands

Check busy flag before sending data, command to LCD, p1=data pin P2.0 connected to RS pin, P2.1
connected to R/W pin, P2.2 connected to E pin

ORG OH

MOV A,#38H ;init. LCD 2 lines ,5x7 matrix
ACALL COMMAND ;issue command

MOV A,#0EH ;LCD on, cursor on
ACALL COMMAND ;issue command

MOV A,#01H ;clear LCD command
ACALL COMMAND ;issue command

MOV A,#06H ;shift cursor right
ACALL COMMAND ;issue command

MOV A,#86H ;cursor: line 1, pos. 6
ACALL COMMAND ;command subroutine

MOV A,#'N' ;display letter N
ACALL DATA DISPLAY

MOV A,#'0O' ;display letter O
ACALL DATA DISPLAY
HERE:SJMP HERE ;STAY HERE

COMMAND :
ACALL READY ;is LCD ready?
MOV P1l,A ;issue command code
CLR P2.0 ;RS=0 for command

No. 45 /74

MPMC Programs by Milav Dabgar

CLR P2.1 ;R/W=0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET
DATA DISPLAY:
ACALL READY ;is LCD ready?
MOV P1,A ;issue data
SETB P2.0 ;RS=1 for data
CLR P2.1 ;R/W =0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET
READY:
SETB P1.7 ;make P1l.7 input port
CLR P2.0 ;RS=0 access command reg
SETB P2.1 ;R/W=1 read command reg
;read command reg and check busy flag
BACK:SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0 H-to-L pulse
JB P1.7,BACK ;stay until busy flag=0
RET
END

LCD Time delay

Call a time delay before sending next data/command: P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E

ORG 0
MOV DPTR,#MYCOM
Cl: CLR A
MOVC A, @A+DPTR
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
INC DPTR
JZ SEND_ DAT
SJMP Cl1
SEND_DAT:
MOV DPTR,#MYDATA
Dl: CLR A
MOVC A, QA+DPTR
ACALL DATAWRT ;call command subroutine
ACALL DELAY ;give LCD some time
INC DPTR
JZ AGAIN
SJMP D1
AGAIN: SJMP AGAIN ;stay here

COMNWRT: ;send command to LCD
MOV P1,A ;copy reg A to Pl
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write

No. 46 /74

MPMC Programs by Milav Dabgar

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET
DATAWRT: ;write data to LCD

MOV P1l,A ;copy reg A to port 1

SETB P2.0 ;RS=1 for data

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET
DELAY: MOV R3,#250 ;50 or higher for fast CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4,HERE ;stay until R4 becomes 0
DJNZ R3,HERE2
RET

;ORG 300H

;MYCOM: DB 38H,0EH,01,06,84H,0 ; commands and null
;MYDATA: DB "HELLO",O0

; END

Keyboard

Program 12-4: Keyboard Program keyboard subroutine. This program sends the ASCII code for pressed key
to PO.1 P1.0-P1.3 connected to rows, P2.0-P2.3 to column

MOV P2,#0FFH ;make P2 an input port

Kl: MOV P1l,#0 ;ground all rows at once

MOV A,P2 ;read all col

; (ensure keys open)

ANL A,00001111B ;masked unused bits

CJNE A,#00001111B,K1 ;till all keys release
K2: ACALL DELAY ;call 20 msec delay

MOV A,P2 ;see if any key is pressed

ANL A,00001111B ;mask unused bits

CJIJNE A,#00001111B,0VER;key pressed, find row
SJIJMP K2 ;check till key pressed

OVER: ACALL DELAY ;wait 20 msec debounce time
MOV A,P2 ;check key closure

ANL A,00001111B ;mask unused bits

CJNE A,#00001111B,0VER];key pressed, find row
SJMP K2 ;if none, keep polling

OVER1l: MOV P1l, #11111110B ;ground row 0O

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

CJNE A,#00001111B,ROW_0 ;key row 0, find col.
MOV P1,#11111101B ;ground row 1

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

No. 47 [74

MPMC Programs by Milav Dabgar

CJINE A,#00001111B,ROW_1 ;key row 1, find col.
MOV P1,#11111011B ;ground row 2

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

CJINE A,#00001111B,ROW_2 ;key row 2, find col.
MOV P1,#11110111B ;ground row 3

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

CJNE A,#00001111B,ROW_3 ;key row 3, find col.
LJMP K2 ;if none, false input, repeat

ROW_0: MOV DPTR,#KCODEO ;set DPTR=start of row 0
SJMP FIND ;find col. Key belongs to

ROW_1: MOV DPTR,#KCODEl ;set DPTR=start of row
SJMP FIND ;find col. Key belongs to

ROW_2: MOV DPTR,#KCODE2 ;set DPTR=start of row 2
SJMP FIND ;find col. Key belongs to

ROW_3: MOV DPTR,#KCODE3 ;set DPTR=start of row 3
FIND: RRC A ;see if any CY bit low

JNC MATCH ;if zero, get ASCII code

INC DPTR ;point to next col. addr

SJMP FIND ;keep searching

MATCH: CLR A ;set A=0 (match is found)

MOVC A,@A+DPTR ;get ASCII from table

MOV PO,A ;display pressed key

LJMP K1

;ASCII LOOK-UP TABLE FOR EACH ROW

ORG 300H

KCODEO: DB '0','1','2','3"' ;ROW 0

KCODEl: DB '4','5','6','7' ;ROW 1

KCODE2: DB '8','9','A','B' ;ROW 2

KCODE3: DB 'Cc','D','E','F' ;ROW 3

o —————— this is delay subroutine -—-——-—————-——-
ORG 400H ;put DELAY at address 300H

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0

RET ;return to caller (when R5 =0)

END

Embedded C Programs

Mazidi Book C Programs

P1

Write an 8051 C program to send values 00 - FF to port P1.

No. 48 /74

MPMC Programs by Milav Dabgar

#include <reg51.h>

void main(void)

{
unsigned char z;
for (z = 0; z <= 255; z++)
Pl = z;
}
P1 to P2

Write an 8051 C program to send hex values for ASCIl characters of 0, 1, 2, 3, 4, 5, A, B, C, and D to port P1.

#include <reg51.h>

void main(void)

{
unsigned char mynum[] = "012345ABCD";
unsigned char z;
for (z = 0; z <= 10; z++)
Pl = mynum[z];
}
P1 Toggle

Write an 8051 C program to toggle all the bits of P1 continuously.

// Toggle Pl forever
#include <reg51.h>

void main(void)

{
for (;;)
{
Pl = 0x55;
Pl = 0OxAA;
}
}
P1 Signed

Write an 8051 C program to send values of -4 to +4 to port P1.

//Singed numbers
#include <reg51.h>

void main(void)

{
char mynum[] = {+1, -1, +2, -2, +3, -3, +4, -4};
unsigned char z;
for (z = 0; z <= 8; z++)
Pl = mynum[z];
}

No. 49 /74

MPMC Programs by Milav Dabgar

P1 Toggle Bit

Write an 8051 C program to toggle bit DO of the port P1 (P1.0) 50,000 times.

#include <reg51.h>
sbit MYBIT = P1 ~ 0;

void main(void)

{
unsigned int z;
for (z = 0; z <= 50000; z++)
{
MYBIT = 0;
MYBIT = 1;
}
}

P1 Toggle Forever

Write an 8051 C program to toggle bits of P1 continuously forever with some delay.

//Toggle Pl forever with some delay in between
//|Ion|l and |Ioffl|
#include <reg51.h>

void main(void)

{
unsigned int x;
for (;;) // repeat forever
{
Pl = 0x55;
for (x = 0; x < 40000; =x++)
; // delay size
// unknown
P1 = 0OxAA;
for (x = 0; x < 40000; =x++)
7
}
}

P1 Toggle 250ms

Write an 8051 C program to toggle bits of P1 ports continuously with a 250 ms.

#include <reg51.h>
void MSDelay(unsigned int);
void main(void)
{
while (1) // repeat forever
{
Pl = 0x55;
MSDelay (250) ;

No. 50 /74

MPMC Programs by Milav Dabgar

Pl = 0xAA;
MSDelay (250);

void MSDelay(unsigned int itime)

{
unsigned int i, Jj;
for (i = 0; i < itime; i++)
for (j = 0; Jj < 1275; j++)
7
}

P1 to P2 LEDs

LEDs are connected to bits P1 and P2. #### Write an 8051 C program that shows the count from 0 to FFH
(0000 0000 to 1111 1111 in binary) on the LEDs.

#include <reg51.h>
#define LED P2

void main(void)

{
Pl = 00; // clear P1
LED = 0; // clear P2
for (;;) // repeat forever
{
Pl++; // increment Pl
LED++; // increment P2
}
}

P1 to P2 Data

Write an 8051 C program to get a byte of data form P1, wait 1/2 second, and then send it to P2.

#include <reg51.h>
void MSDelay(unsigned int);

void main(void)

{
unsigned char mybyte;
Pl = 0xFF; // make Pl input port
while (1)
{
mybyte = Pl; // get a byte from P1
MSDelay (500) ;
P2 = mybyte; // send it to P2
}
}

void MSDelay(unsigned int itime)

No. 51/74

MPMC Programs by Milav Dabgar

{
unsigned int i, 3Jj;
for (i = 0; i < itime; i++)
for (j = 0; Jj < 1275; j++)
}
PO to P1 P2

Write an 8051 C program to get a byte of data form PO. If it is less than 100, send it to P1; otherwise, send it
to P2.

#include <reg51.h>

void main(void)

{
unsigned char mybyte;
PO = 0xFF; // make PO input port
while (1)
{
mybyte = P0; // get a byte from PO
if (mybyte < 100)
Pl = mybyte; // send it to Pl
else
P2 = mybyte; // send it to P2
}
}
P2.4 Toggle

Write an 8051 C program to toggle only bit P2.4 continuously without disturbing the rest of the bits of P2.

//Toggling an individual bit
#include <reg51.h>
sbit mybit = P2 ~ 4;

void main(void)

{
while (1)
{
mybit = 1; // turn on P2.4
mybit = 0; // turn off P2.4
}
}

P1.5 Monitor

Write an 8051 C program to monitor bit P1.5. If it is high, send 55H to PO; otherwise, send AAH to P2.

No. 52 /74

MPMC Programs by Milav Dabgar

#include <reg51.h>
sbit mybit = P1 "~ 5;

void main(void)

{
mybit = 1; // make mybit an input
while (1)
{
if (mybit == 1)
PO = 0x55;
else
P2 = 0xAA;
}
}

Door Sensor

A door sensor is connected to the P1.1 pin, and a buzzer is connected to P1.7. Write an 8051 C program to
monitor the door sensor, and when it opens, sound the buzzer. You can sound the buzzer by sending a
square wave of a few hundred Hz.

#include <reg51.h>
void MSDelay(unsigned int);
sbit Dsensor = Pl " 1;

sbit Buzzer = Pl "~ 7;

void main(void)

{
Dsensor = 1; // make Pl.1 an input
while (1)
{
while (Dsensor == 1) // while it opens
{
Buzzer = 0;
MSDelay (200);
Buzzer = 1;
MSDelay (200);
}
}
}
void MSDelay(unsigned int itime)
{
unsigned int i, Jj;
for (i = 0; i < itime; i++)
for (j = 0; j < 1275; j++)
7
}
LCD 16x2

No. 53 /74

MPMC Programs by Milav Dabgar

The data pins of an LCD are connected to P1. The information is latched into the LCD whenever its Enable
pin goes from high to low. Write an 8051 C program to send “The Earth is but One Country” to this LCD.

#include <reg51.h>
#define LCDData P1 // LCDData declaration
sbit En = P2 ~ 0; // the enable pin

void main(void)

{
unsigned char message[] = "The Earth is but One Country";
unsigned char z;
for (z = 0; z < 28; z++) // send 28 characters
{
LCDData = message[z];
En = 1; // a highEn=0; //-to-low pulse to latch data
}
}

PO P1 P2 Toggle

Write an 8051 C program to toggle all the bits of PO, P1, and P2 continuously with a 250 ms delay. Use the
sfr keyword to declare the port addresses.

// Accessing Ports as SFRs using sfr data type
sfr PO = 0x80;

sfr P1 = 0x90;

sfr P2 = 0xAQ0;

void MSDelay(unsigned int);

void main(void)

{
while (1)
{
P0 = 0x55;
Pl = 0x55;
P2 = 0x55;
MSDelay (250);
PO = OxAA;
Pl = 0OxAA;
P2 = 0xAA;
MSDelay (250) ;
}
}

void MSDelay(unsigned int itime)

{
unsigned int i, j;
for (i = 0; i < itime; i++)
for (j = 0; Jj < 1275; j++)
}

No. 54 /74

MPMC Programs by Milav Dabgar

P1.5 Toggle

Write an 8051 C program to turn bit P1.5 on and off 50,000 times.

#include <reg51.h>
sbit MYBIT = 0x95;

void main(void)

{
unsigned int z;
for (z = 0; z < 50000; z++)
{
MYBIT = 1;
MYBIT = 0;
}
}

P1.0 to P2.7

Write an 8051 C program to get the status of bit P1.0, save it, and send it to P2.7 continuously.

#include <reg51.h>
sbit inbit = P1 © 0;
sbit outbit = P2 ©~ 7;

bit membit; // use bit to declare bit- addressable memory

void main(void)

{
while (1)
{
membit = inbit; // get a bit from P1.0
outbit = membit; // send it to P2.7
}
}

Bitwise Operations

Run the following program on your simulator and examine the results.

#include <reg51.h>

void main(void)

{
PO = 0x35 & OxOF; // ANDing
Pl = 0x04 | 0x68; // ORing
P2 = 0x54 "~ 0x78; // XORing
P0 = ~0x55; // inversing
Pl = 0x9A >> 3; // shifting right 3
P2 = 0x77 >> 4; // shifting right 4
PO = 0x6 << 4; // shifting left 4
}

No. 55 /74

MPMC Programs by Milav Dabgar

PO P2 Toggle

Write an 8051 C program to toggle all the bits of PO and P2 continuously with a 250 ms delay. Using the
inverting and Ex-OR operators, respectively.

#include <reg51.h>
void MSDelay(unsigned int);

void main(void)

{
PO = 0x55;
P2 = 0x55;
while (1)
{
PO = ~PO;
P2 = P2 ~ O0xFF;
MSDelay(250);
}
}

void MSDelay(unsigned int itime)

{
unsigned int i, Jj;
for (i = 0; i < itime; i++)
for (j = 0; Jj < 1275; j++)
7
}

P1.0 to P2.7 Invert

Write an 8051 C program to get bit P1.0 and send it to P2.7 after inverting it.

#include <reg51.h>
sbit inbit = P1 © 0;
sbit outbit = P2 © 7;
bit membit;

void main(void)

{
while (1)
{
membit = inbit; // get a bit from P1.0
outbit = ~membit; // invert it and send it to P2.7
}
}

P1.0 P1.1 to PO

Write an 8051 C program to read the P1.0 and P1.1 bits and issue an ASCII character to PO according to the
following table.

No. 56 /74

MPMC Programs by Milav Dabgar

P1.1 P1.0

0 0send ‘0" to PO
01 send 1" to PO
10send 2" to PO
11 send ‘3'to PO

#include <reg51.h>

void main(void)

{

unsigned char z;

z = P1l;

z = z & 0x3;

switch (2)

{

case (0):

{
PO = '0';
break;

}

case (1l):

{
PO = '1';
break;

}

case (2):

{
PO = '2';
break;

}

case (3):

{
PO = '3';
break;

}

}

}

Packed BCD to ASCII 0x29

Write an 8051 C program to convert packed BCD 0x29 to ASCIl and display the bytes on P1 and P2.

No. 57 /74

MPMC Programs by Milav Dabgar

#include <reg51.h>

void main(void)

{
unsigned char x, y, 2z;
unsigned char mybyte = 0x29;
x = mybyte & 0x0F;
Pl = x | 0x30;
y = mybyte & 0xFO;
y =y >> 4;
P2 =y | 0x30;
}

Packed BCD to ASCII 47

Write an 8051 C program to convert ASCII digits of ‘4" and ‘7' to packed BCD and display them on P1.

#include <reg51.h>

void main(void)

{
unsigned char bcdbyte;
unsigned char w = '4"';
unsigned char z = '7"';

w & 0xOF;

w

w
z = z & 0x0F;
bcdbyte = w | z;
Pl = bcdbyte;

w << 4;

Checksum

Write an 8051 C program to calculate the checksum byte for the data 25H, 62H, 3FH, and 52H.

#include <reg51.h>
void main(void)
{
unsigned char mydata[] = {0x25, 0x62, 0x3F, 0x52};
unsigned char sum = 0;
unsigned char x;
unsigned char chksumbyte;
for (x = 0; x < 4; x++)
{
P2

mydatal[x];
sum = sum + mydatal[x];
Pl = sum;

}

chksumbyte = ~sum + 1;

Pl = chksumbyte;

No. 58 /74

MPMC Programs by Milav Dabgar

Checksum with G B

Write an 8051 C program to perform the checksum operation to ensure data integrity. If data is good, send
ASCII character ‘G’ to P0.Otherwise send ‘B’ to PO.

#include <reg51.h>
void main(void)
{
unsigned char mydata[] = {0x25, 0x62, 0x3F, 0x52, OxXE8};
unsigned char chksum = 0;
unsigned char x;
for (x = 0; x < 5; x++)
chksum = chksum + mydata[x];
if (chksum == 0)
PO = 'G';
else
PO = 'B';

FD to Decimal

Write an 8051 C program to convert 11111101 (FD hex) to decimal and display the digits on PO, P1 and P2.

#include <reg51.h>

void main(void)

{
unsigned char x, binbyte, dl1, d2, d3;
binbyte = 0xFD;
x = binbyte / 10;
dl = binbyte % 10;
d2 = x % 10;
d3 =x / 10;
PO = dil;
Pl = d2;
P2 = d3;

}

RAM Space

Compile and single-step the following program on your 8051 simulator. Examine the contents of the 128-
byte RAM space to locate the ASCII values.

#include <reg51.h>

void main(void)

{
unsigned char mynum[] = "ABCDEF"; // RAM space
unsigned char z;
for (z = 0; z <= 6; z++)
Pl = mynum[z];
}

No.59 /74

MPMC Programs by Milav Dabgar

Code Space

Write, compile and single-step the following program on your 8051 simulator. Examine the contents of the
code space to locate the values.

#include <reg51.h>

void main(void)

{
unsigned char mydata[100]; // RAM space
unsigned char x, z = 0;
for (x = 0; x < 100; =x++)
{
Z2-=;
mydata[x] = z;
Pl = z;
}
}

Code Space RAM

Compile and single-step the following program on your 8051 simulator. Examine the contents of the code
space to locate the ASCII values.

#include <reg51.h>

void main(void)

{
code unsigned char mynum[] = "ABCDEF";
unsigned char z;
for (z = 0; z <= 6; z++)
Pl = mynum[z];
}

Code Space RAM simulator

Write, compile and single-step the following program on your 8051 simulator. Examine the contents of the
code space to locate the values.

#include <reg51.h>

void main(void)

{
unsigned char mydata[100]; // RAM space
unsigned char x, z = 0;
for (x = 0; x < 100; =x++)
{
Z-=7
mydata[x] = z;
Pl = z;
}
}

No. 60 /74

MPMC Programs by Milav Dabgar

Code Space RAM - ABCDEF

Compile and single-step the following program on your 8051 simulator. Examine the contents of the code
space to locate the ASCII values.

#include <reg51.h>

void main(void)

{
code unsigned char mynum[] = "ABCDEF";
unsigned char z;
for (z = 0; z <= 6; z++)
Pl = mynum[z];
}

Serial Output LSB

Write a C program to send out the value 44H serially one bit at a time via P1.0. The LSB should go out first.

#include <reg51.h>
sbit P1b0 = P1 "~ 0;
sbit regALSB = ACC "~ 0;
void main(void)
{
unsigned char conbyte = 0x44;
unsigned char x;
ACC = conbyte;
for (x = 0; x < 8; x++)
{
P1b0 = regALSB;
ACC = ACC >> 1;

Serial Output MSB

Write a C program to send out the value 44H serially one bit at a time via P1.0. The MSB should go out first.

#include <reg51.h>
sbit P1b0 = P1 " 0;
sbit regAMSB = ACC "~ 7;
void main(void)
{
unsigned char conbyte = 0x44;
unsigned char x;
ACC = conbyte;
for (x = 0; x < 8; x++)
{
P1b0 = regAMSB;
ACC = ACC << 1;

No. 61/74

MPMC Programs by Milav Dabgar

Serial Input LSB

Write a C program to bring in a byte of data serially one bit at a time via P1.0. The LSB should come in first.

#include <reg51.h>
sbit P1b0 = P1 " 0;
sbit ACCMSB = ACC " 7;
bit membit;

void main(void)

{
unsigned char x;
for (x = 0; x < 8; x++)
{
membit = P1b0;
ACC = ACC >> 1;
ACCMSB = membit;
}
P2 = ACC;
}

Serial Input MSB

Write a C program to bring in a byte of data serially one bit at a time via P1.0. The MSB should come in first.

#include <reg51.h>
sbit P1b0 = P1 ~ 0;
sbit regALSB = ACC "~ 0;
bit membit;

void main(void)

{
unsigned char x;
for (x = 0; x < 8; x++)
{
membit = P1lb0;
ACC = ACC << 1;
regALSB = membit;
}
P2 = ACC;
}
P1 Toggle

Example 9-20 Write an 8051 C program to toggle all the bits of port P1 continuously with some delay in
between. Use Timer 0, 16-bit mode to generate the delay.

#include <reg51.h>
void TODelay(void);

No. 62 /74

MPMC Programs by Milav Dabgar

void main(void)

{
while (1)
{
Pl = 0x55;
TODelay();
Pl = OxAA;
TODelay();
}
}

void TODelay()

{
TMOD = 0x01;
TLO = 0x00;
THO = 0x35;
TRO = 1;
while (TFO0 == 0)
TRO = 0;
TFO0 = 0;
}

P1.5 Toggle every 50 ms

Example 9-21 Write an 8051 C program to toggle only bit P1.5 continuously every 50 ms. Use Timer 0, mode
1 (16-bit) to create the delay. Test the program on the (a) AT89C51 and (b) DS89C420.

#include <reg51.h>
void TOMlDelay(void);
sbit mybit = P1 * 5;

void main(void)

{
while (1)
{
mybit = ~mybit;
TOM1Delay();
}
}

void TOMlDelay(void)
{

TMOD = 0x01;

TLO = O0xFD;

THO = 0x4B;

TRO = 1;
while (TFO0 == 0)
TRO = 0;
TF0 = 0;

No. 63 /74

MPMC Programs by Milav Dabgar

P2 Toggle every 500 ms

Example 9-22 Write an 8051 C program to toggle all bits of P2 continuously every 500 ms. Use Timer 1,
mode 1 to create the delay.

#include <reg51.h>
void T1MlDelay(void);

void main(void)

{
unsigned char x;
P2 = 0x55;
while (1)
{
P2 = ~P2;
for (x = 0; x < 20; x++)
T1M1lDelay();
}
}

void T1MlDelay(void)

{
TMOD = 0x10;
TL1 = OXFE;
TH1 = 0xA5;
TR1 = 1;
while (TF1 == 0)
TR1 = 0;
TF1l = 0;
}

Switch Monitor

Example 9-25 A switch is connected to pin P1.2. Write an 8051 C program to monitor SW and create the
following frequencies on pin P1.7: SW=0: 00Hz SW=1: 750Hz, use Timer 0, mode 1 for both of them.

#include <reg51.h>

sbit mybit = P1 * 5;

sbit SW = P1 "~ 7;

void TOMlDelay(unsigned char);

void main(void)

{
SW = 1;
while (1)
{

mybit = ~mybit;
if (SW == 0)

No. 64 /74

MPMC Programs by Milav Dabgar

TOM1Delay(0);
else
TOM1lDelay(1l);

void TOMlDelay(unsigned char c)

{
TMOD = 0x01;
if (¢ == 0)
{
TLO = 0x67;
THO = OxXFC;
}
else
{
TLO = 0x9A;
THO = OxXFD;
}
TRO = 1;
while (TFO0 == 0)
7
TRO = 0;
TFO = 0;
}

P1.5 Toggle every 250 ms

Example 9-23 Write an 8051 C program to toggle only pin P1.5 continuously every 250 ms. Use Timer O,
mode 2 (8-bit auto-reload) to create the delay.

#include <reg51.h>
void TOM2Delay(void);
sbit mybit = P1 * 5;

void main(void)

{
unsigned char x, y;
while (1)
{
mybit = ~mybit;
for (x = 0; x < 250; x++)
for (y = 0; y < 36; y++t) // we put 36, not 40
TOM2Delay () ;
}
}

void TOM2Delay(void)

{
TMOD = 0x02;

THO = -23;

No. 65 /74

MPMC Programs by Milav Dabgar

TRO = 1;
while (TFO0 == 0)
TRO = 0;
TFO0 = 0;

P2.7 Toggle every 250 ms

Example 9-24 Write an 8051 C program to create a frequency of 2500 Hz on pin P2.7. Use Timer 1, mode 2
to create delay.

#include <reg51.h>
void T1M2Delay(void);
sbit mybit = P2 * 7;

void main(void)

{
unsigned char x;
while (1)
{
mybit = ~mybit;
T1M2Delay();
}
}
void T1M2Delay(void)
{
TMOD = 0x20;
TH1 = -184;
TR1 = 1;
while (TF1 == 0)
TR1 = 0;
TF1l = 0;
}
Counter 1

Example 9-26 Assume that a 1-Hz external clock is being fed into pin T1 (P3.5). Write a C program for
counter 1 in mode 2 (8-bit auto reload) to count up and display the state of the TL1 count on P1. Start the
count at OH.

#include <reg51.h>

void main(void)

{
Tl = 1;
TMOD = 0x60;
TH1 = 0;
while (1)
{

No. 66 /74

MPMC Programs by Milav Dabgar

do

{
TR1 = 1;
Pl = TL1;

} while (TF1l == 0);

TR1 = 0;

TF1l = 0;

}
}
Counter 0

Example 9-27 Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a C program for
counter 0 in mode 1 (16-bit) to count the pulses and display the state of the THO and TLO registers on P2
and P1, respectively.

#include <reg51.h>

void main(void)

{
TO = 1;
TMOD = 0x05;
TLO = 0;
THO = 0;
while (1)
{
do
{
TRO = 1;
Pl = TLO;
P2 = THO;
} while (TFO0 == 0);
TRO = 0;
TFO = 0;
}
}

Serial Output

Example 10-15 Write a C program for 8051 to transfer the letter “A” serially at 4800 baud continuously. Use
8-bit data and 1 stop bit.

#include <reg51.h>

void main(void)

{
TMOD = 0x20; // use Timer 1, mode 2
TH1 = OxFA; // 4800 baud rate
SCON = 0x50;

TR1 = 1;
while (1)
{

No. 67 [74

MPMC Programs by Milav Dabgar

SBUF = 'A'; // place value in buffer
while (TI == 0)

7
TI = 0;

Serial Output - Message

Example 10-16 Write an 8051 C program to transfer the message “YES” serially at 9600 baud, 8-bit data, 1
stop bit. Do this continuously.

#include <reg51.h>
void SerTx(unsigned char);
void main(void)
{
TMOD = 0x20; // use Timer 1, mode 2
TH1 = OXFD; // 9600 baud rate
SCON = 0x50;
TR1 = 1; // start timer
while (1)
{
SerTx('Y');
SerTx('E');
SerTx('S');

void SerTx(unsigned char x)

{
SBUF = x; // place value in buffer
while (TI == 0)
; // wait until transmitted
TI = 0;
}

Serial Input

Example 10-17 Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate
at 4800, 8-bit data, and 1 stop bit.

#include <reg51.h>
void main(void)
{
unsigned char mybyte;
TMOD = 0x20; // use Timer 1, mode 2
TH1 = OxFA; // 4800 baud rate
SCON = 0x50;
TR1 = 1; // start timer
while (1)

No. 68 /74

MPMC Programs by Milav Dabgar

{ // repeat forever
while (RI == 0)
g // wait to receive
mybyte = SBUF; // save value
Pl = mybyte; // Write value to port
RI = 0;

Serial Output - Switch Monitor

Example 10-19 Write an 8051 C Program to send the two messages “Normal Speed” and “High Speed” to the
serial port. Assuming that SW is connected to pin P2.0, monitor its status and set the baud rate as follows:
SW =0, 28,800 baud rate SW = 1, 56K baud rate Assume that XTAL = 11.0592 MHz for both cases.

#include <reg51.h>
sbit MYSW = P2 ~ 0; // input switch

void main(void)

{
unsigned char z;
unsigned char Messl[] = "Normal Speed";
unsigned char Mess2[] = "High Speed";
TMOD = 0x20; // use Timer 1, mode 2
TH1 = OXFF; // 28800 for normal
SCON = 0x50;
TR1 = 1; // start timer
if (MYSW == 0)
{
for (z = 0; z < 12; z++)
{
SBUF = Messl[z]; // place value in buffer
while (TI == 0)
; // wait for transmit
TI = 0;
}
}
else
{
PCON = PCON | 0x80; // for high speed of 56K
for (z = 0; z < 10; z++)
{
SBUF = Mess2[z]; // place value in buffer
while (TI == 0)
; // wait for transmit
TI = 0;
}
}
}

Serial Output - DS89C4x0

No.69 /74

MPMC Programs by Milav Dabgar

Example 10-20 Write a C program for the DS89C4x0 to transfer the letter “A” serially at 4800 baud
continuously. Use the second serial port with 8-bit data and 1 stop bit. We can only use Timer 1 to set the
baud rate.

#include <reg51.h>
sfr SBUF1 = 0xC1l;
sfr SCON1 = 0xCO;
sbit TI1 = 0xCl;

void main(void)
{
TMOD = 0x20; // use Timer 1, mode 2
TH1 = OxFA; // 4800 baud rate
SCON = 0x50; // use 2nd serial port SCON1
TR1 = 1; // start timer
while (1)
{
SBUF1 = 'A'; // use 2nd serial port SBUF1
while (TI1 == 0)
// wait for transmit
TI1 = 0;

~e

Serial Input - DS89C4x0

Example 10-21 Program the DS89C4x0 in C to receive bytes of data serially via the second serial port and
put them in P1. Set the baud rate at 9600, 8-bit data and 1 stop bit. Use Timer 1 for baud rate generation.

#include <reg51.h>
sfr SBUF1 = 0xC1l;
sfr SCON1 = 0xCO;
sbit RI1 = 0xCO;
void main(void)
{
unsigned char mybyte;
TMOD = 0x20; // use Timer 1, mode 2
TH1 = OXFD; // 9600 baud rate
SCON1 = 0x50; // use 2nd serial port SCON1
TR1 = 1; // start timer
while (1)
{
while (RI1 == 0)
9 // monitor RI1
mybyte = SBUFl; // use SBUF1L
P2 = mybyte; // place value on port
RI1 = 0;

No. 70 /74

MPMC Programs by Milav Dabgar

Bit Reading with Square Wave

Write a C program that continuously gets a single bit of data from P1.7 and sends it to P1.0, while
simultaneously creating a square wave of 200 us period on pin P2.5. Use Timer O to create the square wave.
Assume that XTAL = 11.0592 MHz.

// We will use timer 0 mode 2 (auto-reload). One half of the period is 100 us. 100/1.085
us = 92, and THO = 256 - 92 = 164 or A4H

#include <reg51.h>

sbit SWw = P1 ~ 7;

sbit IND = P1 * 0;

sbit WAVE = P2 " 5;

void timerO(void) interrupt 1

{
WAVE = ~WAVE; // toggle pin

void main()

{
SW = 1; // make switch input
TMOD = 0x02;
THO = OxA4; // TH0=-92
IE = 0x82; // enable interrupt for timer 0
while (1)
{
IND = SW; // send switch to LED
}
}

Serial Communication with Square Wave

Write a C program using interrupts to do the following: (a) Receive data serially and send it to PO (b) Read
port P1, transmit data serially, and give a copy to P2 (c) Make timer O generate a square wave of 5 kHz
frequency on PO.1 Assume that XTAL = 11.0592 MHz. Set the baud rate at 4800.

#include <reg51.h>
sbit WAVE = PO "~ 1;

void timer0O() interrupt 1

{
WAVE = ~WAVE; // toggle pin

void serial0O() interrupt 4
{
if (TI == 1)
{
TI = 0; // clear interrupt

No. 71/74

MPMC Programs by Milav Dabgar

else

{
PO = SBUF; // put value on pins
RI = 0; // clear interrupt

}

void main()

{
unsigned char x;
Pl = 0xFF; // make Pl an input
TMOD = 0x22;
TH1 = OxF6; // 4800 baud rate
SCON = 0x50;
THO = OxA4; // 5 kHz has T=200us
IE = 0x92; // enable interrupts
TR1 = 1; // start timer 1
TRO = 1; // start timer 0
while (1)
{
x = Pl; // read value from pins
SBUF = x; // put value in buffer
P2 = x; // Write value to pins
}
}

Event Counter with Wave Generation

Write a C program using interrupts to do the following: (a) Generate a 10 KHz frequency on P2.1 using TO 8-
bit auto-reload (b) Use timer 1 as an event counter to count up a 1-Hz pulse and display it on PO. The pulse
is connected to EX1. Assume that XTAL = 11.0592 MHz. Set the baud rate at 9600.

#include <reg51.h>
sbit WAVE = P2 * 1;
unsigned char cnt;

void timer0O() interrupt 1

{
WAVE = ~WAVE; // toggle pin
}
void timerl() interrupt 3
{
cnt++; // increment counter
P0 = cnt; // display value on pins
}

void main()

{
cnt = 0; // set counter to 0
TMOD = 0x42;
THO = 0x46; // 10 KHz
IE = 0x86; // enable interrupts

No.72 /74

MPMC Programs by Milav Dabgar

TRO = 1; // start timer 0
while (1)

; // wait until interrupted

LCD Busy Flag

Example 12-2 Write an 8051 C program to send letters ‘M’, ‘D', and ‘E’ to the LCD using the busy flag method.

#include <reg51.h>

sfr ldata = 0x90; // P1=LCD data pins
sbit rs = P2 © 0;

sbit rw = P2 ©~ 1;

sbit en = P2 ~ 2;

sbit busy = P1 " 7;

void MSDelay(unsigned int itime)

{
unsigned int i, 3Jj;
for (i = 0; i < itime; i++)
for (j = 0; Jj < 1275; j++)
}

void lcdready()

{

busy = 1; // make the busy pin at input

rs = 0;

rw = 1;

while (busy == 1)

{ // wait here for busy flag
en = 0; // strobe the enable pin
MSDelay(1);
en = 1;

}

}

void lcdcmd(unsigned char value)

{
lcdready(); // check the LCD busy flag
ldata = value; // put the value on the pins
rs = 0;
rw = 0;
en = 1; // strobe the enable pin
MSDelay(1);
en = 0;

return;

void lcddata(unsigned char value)

{

No. 73 /74

MPMC Programs by Milav Dabgar

lcdready(); // check the LCD busy flag
ldata = value; // put the value on the pins
rs = 1;

rw = 0;

en = 1; // strobe the enable pin
MSDelay(1);
en = 0;

return;

void main()

{

lcdemd (0x38) ;
lcdemd (0x0E) ;
lcdemd (0x01) ;
lcdemd (0x06) ;
lcdemd(0x86); // line 1, position 6
lcddata('M');
lcddata('D"');
lcddata('E");

No. 74 /74

	Assembly Language Programs
	MPMC GTU Paper Programs Solutions
	Multiply Two Bytes
	RAM Multiplication
	Divide Two Bytes
	Number Division
	Square Wave Generation P1.3 50% DC
	Square Wave Generation P1.1
	Software Delay
	Bit Masking
	Memory Fill
	External Memory Addition
	LED Flashing
	Register Separation
	Summation of first 9 numbers
	Register Exchange
	RAM Copy
	Switch-LED Connection
	External RAM
	External RAM Add
	Register Exchange A & B
	Register Multiplication A & B
	Register Division A & B
	RAM Copy 100h to 200h
	RAM Add

	Mazidi Book Assembly Language Programs
	Add Value 3 to ACC Ten Times
	Complement ACC 700 Times
	Sum of 79H, F5H, E2H
	LCALL Example
	Use PUSH/POP in Subroutine
	Port 0 Output
	Port 0 Input
	Port 1 Output
	Port 1 Input
	Port 1 Square Wave
	Port 1 to Port 0
	Oven Monitor
	Switch to Port 2
	Switch to Port 2 with Carry Flag
	LED from Switch
	Send 55H to P1 and P2
	Push/Pop
	RAM Copy 40H to 41H
	RAM Clear
	RAM Copy 35H to 60H
	ROM Copy
	Port 1 to Port 2
	Toggle P1
	Switch to Port 2
	ROM to RAM
	RAM Sum
	Add Two 16-bit Numbers
	BCD Sum
	Packed BCD to ASCII
	Find Timer 0 Delay
	Modify TL and TH
	Square Wave
	Find Timer 0 Delay
	Generate Square Wave
	Generate Square Wave 50kHz
	Find Square Wave Frequency
	Find Square Wave Frequency
	Counter 1
	Serial Transfer
	Serial Transfer
	Serial Receive
	Serial Port
	Serial Port
	Serial Port
	Square Wave
	Square Wave
	Interrupt
	Interrupt INT1
	P1 to P2 and Serial Port
	P1 to P2 and P0 to Serial Port
	P0 to Serial Port and P1 to P2
	LCD
	LCD Busy flag checking
	LCD commands
	LCD Busy flag checking commands
	LCD Time delay
	Keyboard

	Embedded C Programs
	Mazidi Book C Programs
	P1
	P1 to P2
	P1 Toggle
	P1 Signed
	P1 Toggle Bit
	P1 Toggle Forever
	P1 Toggle 250ms
	P1 to P2 LEDs
	P1 to P2 Data
	P0 to P1 P2
	P2.4 Toggle
	P1.5 Monitor
	Door Sensor
	LCD 16x2
	P0 P1 P2 Toggle
	P1.5 Toggle
	P1.0 to P2.7
	Bitwise Operations
	P0 P2 Toggle
	P1.0 to P2.7 Invert
	P1.0 P1.1 to P0
	Packed BCD to ASCII 0x29
	Packed BCD to ASCII 47
	Checksum
	Checksum with G B
	FD to Decimal
	RAM Space
	Code Space
	Code Space RAM
	Code Space RAM simulator
	Code Space RAM - ABCDEF
	Serial Output LSB
	Serial Output MSB
	Serial Input LSB
	Serial Input MSB
	P1 Toggle
	P1.5 Toggle every 50 ms
	P2 Toggle every 500 ms
	Switch Monitor
	P1.5 Toggle every 250 ms
	P2.7 Toggle every 250 ms
	Counter 1
	Counter 0
	Serial Output
	Serial Output - Message
	Serial Input
	Serial Output - Switch Monitor
	Serial Output - DS89C4x0
	Serial Input - DS89C4x0
	Bit Reading with Square Wave
	Serial Communication with Square Wave
	Event Counter with Wave Generation
	LCD Busy Flag

