

# Unit-4. LASER and Fiber Optics - Short Solutions

## Part A: Short Answers (1-2 marks)

### (1) Snell's law

The ratio of sine of angle of incidence to sine of angle of refraction is constant.

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \quad \text{or} \quad \sin i / \sin r = n_2 / n_1$$

### (2) Full form of LASER

Light Amplification by Stimulated Emission of Radiation

### (3) Monochromatic and Polychromatic light

- **Monochromatic:** Single wavelength/color (e.g., laser, sodium lamp)
- **Polychromatic:** Multiple wavelengths/colors (e.g., white light, sunlight)

### (4) Properties of laser light

1. Monochromatic (single wavelength)
2. Coherent (waves in phase)
3. Directional (highly focused beam)
4. High intensity
5. Polarized

### (5) Definitions

**Absolute Refractive Index:** Ratio of speed of light in vacuum to speed in medium.

$$n = c/v$$

**Critical Angle:** Angle of incidence in denser medium for which angle of refraction becomes 90°.

$$\sin \theta_c = n_2 / n_1$$

## Part B: Detailed Answers (2-3 marks)

### (1) Refraction of light

Change in direction of light when passing from one medium to another due to change in velocity.

- Rarer to denser: bends towards normal
- Denser to rarer: bends away from normal

## (2) Refractive index

Measure of how much light slows in a medium.

**Absolute:**  $n = c/v$  (always  $> 1$ )

Examples: Water (1.33), Glass (1.5), Diamond (2.42)

## (3) Total Internal Reflection (TIR)

Complete reflection of light back into denser medium when traveling from denser to rarer medium.

**Conditions:**

1. Light travels from denser to rarer medium ( $n_1 > n_2$ )
2. Angle of incidence  $>$  critical angle ( $i > \theta_c$ )

**Applications:** Optical fibers, prisms, diamonds, mirages

## (4) Common light vs Laser light

| Property   | Common Light         | Laser Light         |
|------------|----------------------|---------------------|
| Wavelength | Multiple             | Single              |
| Coherence  | Non-coherent         | Coherent            |
| Direction  | All directions       | Unidirectional      |
| Intensity  | Low                  | Very high           |
| Source     | Spontaneous emission | Stimulated emission |

## (5) Applications of LASER (6 fields)

1. **Medical:** Surgery (LASIK), tumor removal, kidney stones
2. **Communication:** Optical fiber networks, data transmission
3. **Industrial:** Cutting, welding, drilling, 3D printing
4. **Military:** Range finders, guided missiles, LIDAR
5. **Scientific:** Spectroscopy, holography, measurements
6. **Commercial:** Barcode scanners, CD/DVD players, printers

## (6) Types of optical fiber

**By Mode:**

- **Single Mode:** Core 8-10  $\mu\text{m}$ , long distance, low dispersion

- **Multimode:** Core 50-200  $\mu\text{m}$ , short distance, high dispersion

#### By Refractive Index:

- **Step Index:** Uniform core RI, zigzag path
- **Graded Index:** RI decreases from center, sinusoidal path

## (7) Applications of optical fiber

1. **Telecommunications:** Internet, telephone, cable TV
2. **Medical:** Endoscopy, laser surgery, imaging
3. **Industrial:** Sensors, lighting, inspection
4. **Military:** Secure communication, navigation
5. **Networking:** LANs, data centers
6. **Automotive:** Safety systems, entertainment

## (8) Construction of optical fiber

Three layers:

1. **Core:** Glass/plastic, high RI ( $n_1$ ), carries light (8-200  $\mu\text{m}$ )
2. **Cladding:** Lower RI ( $n_2$ ), reflects light back (125  $\mu\text{m}$ )
3. **Jacket:** Protective plastic coating (250-900  $\mu\text{m}$ )

Light propagates through TIR at core-cladding interface.

## (9) Advantages of optical fiber over coaxial cable

1. **Higher bandwidth:** Terabits vs Gigabits per second
2. **Lower loss:** 0.2-0.5 dB/km vs 10-30 dB/km
3. **EMI immunity:** Not affected by electromagnetic interference
4. **Higher security:** Difficult to tap
5. **Lighter and smaller:** Easy installation
6. **Non-conductive:** No spark hazard, lightning safe
7. **Longer distance:** 100+ km without repeaters
8. **Corrosion resistant:** Glass/plastic vs metal
9. **Future-proof:** Upgradeable without cable change
10. **Lower cost:** Cheaper raw materials (silica)

## Part C: Numericals (3 marks)

### (1) Refractive index of liquid

**Given:**  $c = 3 \times 10^8 \text{ m/s}$ ,  $v = 1.8 \times 10^8 \text{ m/s}$

$$n = c/v = (3 \times 10^8) / (1.8 \times 10^8) = 1.67$$

**Answer: 1.67**

## (2) Refractive index of glass

**Given:**  $c = 3 \times 10^8 \text{ m/s}$ ,  $v = 2 \times 10^8 \text{ m/s}$

$$n = c/v = (3 \times 10^8) / (2 \times 10^8) = 1.5$$

**Answer: 1.5**

## (3) Velocity of light in glass

**Given:**  $n = 1.56$ ,  $c = 3 \times 10^8 \text{ m/s}$

$$v = c/n = (3 \times 10^8) / 1.56 = 1.923 \times 10^8 \text{ m/s}$$

**Answer:  $1.92 \times 10^8 \text{ m/s}$**

## (4) Acceptance angle

**Given:**  $n_1 = 1.563$ ,  $n_2 = 1.498$

$$\begin{aligned} NA &= \sqrt{(n_1^2 - n_2^2)} = \sqrt{(2.443 - 2.244)} = \sqrt{0.199} = 0.446 \\ \theta_a &= \sin^{-1}(0.446) = 26.5^\circ \end{aligned}$$

**Answer:  $NA = 0.446$ ,  $\theta_a = 26.5^\circ$**

## (5) Acceptance angle and NA

**Given:**  $n_1 = 1.48$ ,  $n_2 = 1.45$

$$\begin{aligned} NA &= \sqrt{(n_1^2 - n_2^2)} = \sqrt{(2.1904 - 2.1025)} = \sqrt{0.0879} = 0.297 \\ \theta_a &= \sin^{-1}(0.297) = 17.3^\circ \end{aligned}$$

**Answer:  $NA = 0.297$ ,  $\theta_a = 17.3^\circ$**

## Key Formulas

Refraction:  $n = c/v = \sin i / \sin r$

Critical Angle:  $\sin \theta_c = n_2/n_1$

TIR Conditions:  $n_1 > n_2, i > \theta_c$

Optical Fiber:  $C = \epsilon_0 A/d$

Numerical Aperture:  $NA = \sqrt{(n_1^2 - n_2^2)}$

Acceptance Angle:  $\sin \theta_a = NA$

---

*Short Solutions - Unit 4*