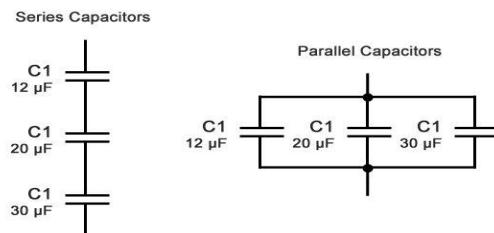


Unit-2. Electrostatics (CO-2)

Part A: Give answers in short. (1 or 2 marks)

(1) Give definitions with its standard unit:


Electric field, Electric potential, Electric potential difference, Electric flux, Capacitor and capacitance

Part B: Write Answers in Detail. (2 or 3 marks)

- (1) Explain Coulomb's law with mathematical formula.
- (2) Explain characteristics of Electric field lines with figures.
- (3) Write short note on parallel plate capacitor.
- (4) Explain series connection of capacitors in detail.
- (5) Explain parallel connection of capacitors in detail.
- (6) Explain effect of dielectric material on the capacitance of parallel plate.

Part C : Numericals. (3 marks)

- (1) Two charges with value of $20 \mu\text{C}$ and $10 \mu\text{C}$ are separated 0.02 m distance in air. Find electric force or coulomb force between these charges. K value is $9 \times 10^9 \text{ N m}^2/\text{C}^2$.
- (2) 1600 Joule of work is done in moving a charge 25 coulomb from one point to the other. Calculate the potential difference between the points.
- (3) A capacitor gets a charge $60 \mu\text{C}$ when it is connected to a battery of e.m.f. 12 V . Calculate the capacitance of the capacitor.
- (4) Three capacitors of $10\mu\text{F}$ are connected in series and parallel connections in circuit. find out total capacitance in both cases.
- (5) plat area of one parallel plat capacitor is 10 mm^2 , which are separated with 1mm distance in air. Calculate capacitance of capacitor.
- (6) The distance between the plats is 1mm , if we want to get capacitance of 1F , how much of area of plat should be?
- (7) As per the below circuit, calculate total capacitance value.
